端侧大模型是当前人工智能领域的热点话题。
一.端侧大模型发展现状
1.论文: 《On-Device Language Models: A Comprehensive Review》
链接:https://arxiv.org/abs/2409.00088
简介: 该论文全面综述了设备端语言模型的发展,包括高效架构设计、模型压缩技术及硬件加速策略,并通过案例研究展示其实际应用及潜在优势。
2.文章: 《万字长文细说端侧大模型进展(综述)》
链接:万字长文细说端侧大模型进展(综述) - 文章 - 开发者社区 - 火山引擎
简介: 详细介绍了端侧大模型的最新进展,包括模型架构、压缩技术、硬件加速等方面的内容。
二.部署端侧大模型流程
1.需求分析与模型选择:
明确应用场景和需求,确定所需模型的功能和性能要求。
根据需求选择合适的轻量化模型或预训练模型,如语言模型(MobileBERT、DistilGPT等)、语音模型(如OpenAI Whisper的轻量版)或多功能模型(如Llama 2系列的轻量版)。
2.模型优化:
对选定的模型进行剪枝<