Advances in Wireless Communication 课堂笔记(中下)

上:Advances in Wireless Communication 课堂笔记(上)
中:Advances in Wireless Communication 课堂笔记(中)

Advanced modulation techniques, Iterative detection and decoding

Modulation in 5G

Mainly uses QAM schemes
Going back to structure of PDSCH for an M-ary modulation (M-QAM), the encoded interleaved rate-matched scrambled bits are splited into chunck of m bits and the mapped to the complex modulated symbols

Modulation coding scheme MCS

Modulation schemeModulation order
QPSK2
16-QAM4
64-QAM6
256-QAM8
release 17:1024-QAM10

MCS table between 0 and 31 (5 bits representation)

MCS indexModulation ordercode rate (*1024)spectral efficiency
02120(lowest rate=120/1024)0.234
2789487.4

Bounds on symbol error probability
M-ary modulation with signal set { S 1 ( t ) , S 2 ( t ) , . . . , S n ( t ) S_1(t),S_2(t),...,S_n(t) S1(t),S2(t),...,Sn(t)} Let E i j E_{ij} Eij be the event that P ( y ( t ) ∣ S j ( t ) ) > P ( y ( t ) ∣ S i ( t ) ) P ( e r r o r ∣ S i ( t ) ) = P ( ⋃ j = 1 , j ≠ i M E i j ) P ( e r r o r ∣ S i ( t ) ) < ∑ j = 1 , j ≠ i M P ( E i j ) ⇒ ∑ j = 1 , j ≠ i M Q ( D i j / 2 N o ) ≤ ( M − 1 ) Q ( D m i n ( i ) 2 N o ) P(y(t)|S_j(t))>P(y(t)|S_i(t))\\ P(error|S_i(t))=P(\bigcup ^M_{j=1,j\ne i}E_{ij})\\ P(error|S_i(t))<\sum ^M_{j=1,j\ne i}P(E_{ij})\\ \Rightarrow \sum^M_{j=1,j\ne i}Q(D_{ij}/\sqrt{2N_o})\le(M-1)Q(\frac {D_{min}(i)}{\sqrt{2N_o}}) P(y(t)Sj(t))>P(y(t)Si(t))P(errorSi(t))=P(j=1,j=iMEij)P(errorSi(t))<j=1,j=iMP(Eij)j=1,j=iMQ(Dij/2No )(M1)Q(2No Dmin(i))
Union bound P ( ⋃ i = 1 n A i ≤ ∑ i = 1 n P ( A i ) ) P(\bigcup_{i=1}^nA_i\le\sum^n_{i=1}P(A_i)) P(i=1nAii=1nP(Ai))
D m i n ( i ) D_{min}(i) Dmin(i)
(figure)

D m i n ( i ) = m i n D i j 1 ≤ j ≤ m , j ≠ i D_{min}(i)=min D_{ij}\qquad 1\le j\le m,j\ne i Dmin(i)=minDij1jm,j=i

AWGN:
(figure)

P ( E i j ) = P ( n ≥ D i j 2 ) = Q ( D i j 2 N o ) P(E_{ij})=P(n\ge\frac {D_{ij}}2)=Q(\frac {D_{ij}}{\sqrt{2N_o}}) P(Eij)=P(n2Dij)=Q(2No Dij)
n: one component of Gaussian noise~ N ( 0 , N o 2 ) \mathcal N(0,\frac {N_o}2) N(0,2No)

Also for linear bound
P ( e r r o r ∣ S i ( t ) ) ≥ m a x P ( E i j )    ( i ≠ j ) = Q ( D m i n ( i ) / 2 N o ) P(error|S_i(t))\ge maxP(E_{ij})\;(i\ne j)=Q(D_{min}(i)/\sqrt{2N_o}) P(errorSi(t))maxP(Eij)(i=j)=Q(Dmin(i)/2No )
For the average probability of error
P a v ( e r r o r ) = 1 M ∑ i = 1 m P ( e r r o r ∣ S i ( t ) ) ≤ ( M − 1 ) Q ( D m i n 2 N o ) P_{av}(error)=\frac1M \sum^m_{i=1}P(error|S_i(t))\le (M-1)Q(\frac {D_{min}}{\sqrt{2N_o}}) Pav(error)=M1i=1mP(errorSi(t))(M1)Q(2No Dmin)

Bit-level demodulation
Example:
QPSK symbol( b 1 , b 2 b_1,b_2 b1,b2), received y ( y 1 , y 2 ) y(y_1, y_2) y(y1,y2)
y = s i + ( n 1 , n 2 ) y=s_i+(n_1,n_2) y=si+(n1,n2)

gray-labling

在这里插入图片描述

ML decision for b 1 b_1 b1
b 1 = 0 b_1=0 b1=0 if P ( y ∣ b 1 = 0 ) > P ( y ∣ b 1 = 1 ) P(y|b_1=0)>P(y|b_1=1) P(yb1=0)>P(yb1=1)
P ( y ∣ b 1 = 0 , b 2 = 0 ) ⏟ S 1 P ( b 2 = 0 ) ⏟ 1 2 + P ( y ∣ b 1 = 0 , b 2 = 1 ) ⏟ S 2 P ( b 2 = 1 ) ⏟ 1 2 \underbrace{P(y|b_1=0,b_2=0)}_{S_1}\underbrace{P(b_2=0)}_\frac 12+\underbrace{P(y|b_1=0,b_2=1)}_{S_2}\underbrace{P(b_2=1)}_{\frac 12} S1 P(yb1=0,b2=0)21 P(b2=0)+S2 P(yb1=0,b2=1)21 P(b2=1)

Similarly
P ( y ∣ b 1 = 1 ) = 1 2 P ( y ∣ S 3 ) + 1 2 P ( y ∣ S 4 ) P(y|b_1=1)=\frac12P(y|S_3)+\frac12P(y|S_4) P(yb1=1)=21P(yS3)+21P(yS4)
Decide b 1 = 0 b_1=0 b1=0 if y 2 ≥ 0 y_2\ge0 y20
Decide b 2 = 0 b_2=0 b2=0 if y 1 ≥ 0 y_1\ge0 y10
P(error in b 1 b_1 b1)= P ( n 2 ≤ − 1 ) = Q ( 1 σ ) P(n_2\le-1)=Q(\frac1{\sigma}) P(n21)=Q(σ1)
this is the optimal labeling rule

An alternative which is worse:
(figure)
Suppose S 1 S_1 S1 is transmitted P ( c o r r e c t    b 2 ∣ S 1 ) = ( 1 − Q ( 1 σ ) ) 2 + Q ( 1 σ ) 2 = 1 − 2 Q ( 1 σ ) + 2 Q ( 1 σ ) 2 P(correct \;b_2|S_1)=(1-Q(\frac1{\sigma}))^2+Q(\frac 1{\sigma})^2=1-2Q(\frac1{\sigma})+2Q(\frac1{\sigma})^2 P(correctb2S1)=(1Q(σ1))2+Q(σ1)2=12Q(σ1)+2Q(σ1)2
P(error in b 2 ) b_2) b2)= 2 Q ( 1 σ ) − 2 Q ( 1 σ ) 2 > Q ( 1 σ ) ⇒ Q ( 1 σ ) > 2 Q ( 1 σ ) 2 ⇔ 1 2 > Q ( 1 σ ) 2Q(\frac1{\sigma})-2Q(\frac1{\sigma})^2>Q(\frac1{\sigma})\\\Rightarrow Q(\frac1{\sigma})>2Q(\frac1{\sigma})^2\\\Leftrightarrow\frac12>Q(\frac1{\sigma}) 2Q(σ1)2Q(σ1)2>Q(σ1)Q(σ1)>2Q(σ1)221>Q(σ1)

In general for M_PSK gray labeling is an ording if binary strings on the circle, such that two successive values differ in only on bit

8PSK gray coding and 16PSK gray coding

8PSK:
在这里插入图片描述
16PSK
在这里插入图片描述

liklihood ratios for bit b i b_i bi:
l o g P ( y ∣ b i = 0 ) P ( y ∣ b i = 1 ) log\frac {P(y|b_i=0)}{P(y|b_i=1)} logP(ybi=1)P(ybi=0)
this is LLR for bit b i b_i bi, which will be passed to the decoder

Bit-Interleaved coded Modulation (BICM)

16 QAM with gray mapping:
在这里插入图片描述

consider a symbol x = ( x 1 , x 2 , x 3 , x 4 ) , x 1 x=(x_1,x_2,x_3,x_4),x_1 x=(x1,x2,x3,x4),x1and x 3 x_3 x3 observe identical and independence channels
The bits x 2 x_2 x2 and x 4 x_4 x4 also observe indentical an independence channels

In general BICM with M-ary modulation M = 2 m M=2^m M=2m
can be decomposed into m parallel channels
(figure)

For 16-QAM, two types of channel, two from each type x 1 x_1 x1 & x 2 x_2 x2, x 3 x_3 x3 & x 4 x_4 x4 correlation
在这里插入图片描述

Coded modulation capacity and BICM capacity
channel capacity c = c= c= s u p P x {sup} \atop {P_x} Pxsup I ( x ; y ) I(x;y) I(x;y)
P x P_x Px: input distribution

For AWGN with input power P, noise power N, bandwidth W C = 1 2 l o g ( 1 + P / W ) = 1 2 l o g ( 1 + S N R ) C=\frac12 log(1+P/W)=\frac12 log(1+SNR) C=21log(1+P/W)=21log(1+SNR)

Coded modulation capacity I ( X , Y ) I(X,Y) I(X,Y)
X X X belongs to the constellation set of modulation with uniform distribution
在这里插入图片描述

x = ( x 1 , x 2 , x 3 , x 4 ) x=(x_1,x_2,x_3,x_4) x=(x1,x2,x3,x4)
I ( x 1 ; y ) + I ( x 2 ; y ) + I ( x 3 ; y ) + I ( x 4 ; y ) ≤ I ( x 1 , x 2 , x 3 , x 4 ; y ) I(x_1;y)+I(x_2;y)+I(x_3;y)+I(x_4;y)\le I(x_1,x_2,x_3,x_4;y) I(x1;y)+I(x2;y)+I(x3;y)+I(x4;y)I(x1,x2,x3,x4;y)

For BICM, with M = 2 m M=2^m M=2m (size of the constellation) in parallel channels with inputs x 1 , x 2 , x 3 , . . . , x m x_1,x_2,x_3,...,x_m x1,x2,x3,...,xm C B I C M = ∑ i = 1 m I ( x i ; y ) C_{BICM}=\sum^m_{i=1}I(x_i;y) CBICM=i=1mI(xi;y)

Coded modulation capacity and BICM capacity
在这里插入图片描述

BICM capacity (dash-dotted lines)
with Gray labeling, the difference between BICM capacity and coded modulation capacity is very small

Basics of classical multiple access techniques

Multiuser Communication

Two major scenarios
Broadcast Channel (downlink):
(figure)

Multiple access channel (uplink):
在这里插入图片描述

Two early method of multiple access techniques

  1. FDMA (frequency division multiple access)
  2. TDMA (time division multiple access)

cross-talk or interference
3. implementation of filters at all possible frequency bands
4. crosstalk
guard band to reduce crosstalk
(figure)

for TDMA, time synchronization is very challenging as the number of user grow
(TDMA figure)

In both TDMA and FDMA, we allocate orthogonal resources either in time or frequency to users
S 1 ( t ) S_1(t) S1(t) and S 2 ( t ) S_2(t) S2(t) are orthogonal: ∫ S 1 ( t ) S 2 ( t ) d t = 0 \int{S_1(t)S_2(t)}dt=0 S1(t)S2(t)dt=0

CDMA code division multiple access (CDMA)
In CDMA, each users is assigned a distinct signature sequence (or waveform) which the user employs to spread the signal
(figure)

CDMA is a spread spectrum technique, where symbol rate is much smaller than the bandwidth
symbol rate is proportion to 1 T \frac 1T T1

These techniques provide frequency diversity against “selective fading”
selective fading:
(figure)

one of the most challenging parts of CDMA systems is the design of equalizes
h ( t ) h(t) h(t):h(0),h(1),…,h(d) — all channel gain
y ( t ) = x ( t ) ∗ h ( t ) , y [ n ] = x [ n ] ∗ h [ n ] y(t)=x(t)*h(t),y[n]=x[n]*h[n] y(t)=x(t)h(t),y[n]=x[n]h[n]

orthogonal frequency division multiplexing (OFDM)
X 0 , X 1 , . . . , X N − 1 X_0,X_1,...,X_{N-1} X0,X1,...,XN1 denote N complex symbols (in frequency domain)
Taking the IFFT
x n = 1 N ∑ k = 0 N − 1 X k e j 2 π n k N f o r    n = 0 , 1 , . . . , N − 1 x_n=\frac1{\sqrt N}\sum^{N-1}_{k=0}X_ke^{\frac{j2\pi nk}N}\qquad for \;n=0,1,...,N-1 xn=N 1k=0N1XkeNj2πnkforn=0,1,...,N1
x i x_i xi s are in the time domain
Then x 0 , x 1 , . . . , x N − 1 x_0,x_1,...,x_{N-1} x0,x1,...,xN1 are passed through a D/A (digital to analog) converter resulting in the baseband OFDM signal x ( t ) x(t) x(t), x ( t ) = 1 N ∑ k = 0 N − 1 X k e j 2 π k t T N 0 ≤ t ≤ T N x(t)=\frac1{\sqrt N}\sum^{N-1}_{k=0}X_ke^{\frac{j2\pi k_t}{T_N}}\quad0\le t\le T_N x(t)=N 1k=0N1XkeTNj2πkt0tTN . Where T N T_N TN is the duration of OFDM signal.
The sub-carrier frequencies are f i = i / T N ,    i = 0 , 1 , . . . , N − 1 f_i=i/T_N,\;i=0,1,...,N-1 fi=i/TN,i=0,1,...,N1 and the samples x 0 , x 1 , . . . , x N − 1 x_0,x_1,...,x_{N-1} x0,x1,...,xN1 represent samples of x ( t ) x(t) x(t) every T N / N T_N/N TN/N second
(figure OFDM sub-frame)

The block diagram of an OFDM system
(figure)

A major advantage of OFDM comparing with CDMA sis its resilience to ISI(inter-symbol interference) because the data rate on each sub-channel is very low ( B / N < < B c B/N<<B_c B/N<<Bc, coherence bandwidth), B c B_c Bc proportional to 1 / D 1/D 1/D, where D is delay spread. Channel equalization is much simpler since channel gain can be consider flat at each sub-channel

Non-orthogonal multiple access techniques

Cyclic prefix for OFDM:

x 0 , x 1 , . . . x N − 1 ⏟ data symbols in time domain I F F T ← X 0 , X 1 , . . . , X N − 1 ⏟ data symbols in frequency domain y [ n ] = x [ n ] ∗ c [ n ] = ∑ k = n − μ + 1 n x [ k ] c [ n − k ] \underbrace {x_0,x_1,...x_{N-1}}_{\text{data symbols in time domain}} {IFFT \atop \leftarrow} \underbrace{X_0,X_1,...,X_{N-1}}_{\text{data symbols in frequency domain}} \\ y[n]=x[n]*c[n]=\sum^n_{k=n-\mu+1}x[k]c[n-k] data symbols in time domain x0,x1,...xN1IFFTdata symbols in frequency domain X0,X1,...,XN1y[n]=x[n]c[n]=k=nμ+1nx[k]c[nk]

(figure)
channel delay spread is at most μ T N / N \mu T_N/N μTN/N(figure)
In the frequency domain, see X ⋅ C X\cdot C XC

在这里插入图片描述
If we consider the convolution of x N − μ , . . . , x N − 1 , x 0 , x 1 , . . . . x N − 1 {x_{N-\mu},..., x_{N-1},x_0,x_1,....x_{N-1}} xNμ,...,xN1,x0,x1,....xN1 with c 0 , c 1 , . . . , c μ {c_0,c_1,...,c_{\mu}} c0,c1,...,cμ and remove the last μ \mu μ samples, we get a linear convolution which is equivalent to circular convolution
Therefore in the frequency domain, we have x ^ k = c k × x k \hat{x}_k=c_k\times x_k x^k=ck×xk
c k c_k ck: FFT of the sequence ( c 0 , c 1 . . . c μ ⏟ μ + 1 , 0 , 0 , . . . ⏟ N − μ + 1 \underbrace{c_0,c_1...c_\mu}_{\mu+1},\underbrace{0,0,...}_{N-\mu+1} μ+1 c0,c1...cμ,Nμ+1 0,0,...)

Therefore the effect of channel, c ( t ) c(t) c(t) can be completely removed by a simple equalization in the frequency domain

Uplink AWGN channel

consider the discrete time model with two users y = x 1 + x 2 + n ,    n ∼ N ( 0 , N 0 ) y=x_1+x_2+n,\;n\sim \mathcal{N}(0,N_0) y=x1+x2+n,nN(0,N0) users have powewr constraint
user K power is P K P_K PK
R 1 < 1 2 l o g ( 1 + P 1 / N o ) R_1<\frac 12 log(1+P_1/N_o) R1<21log(1+P1/No)— maximum capacity user 1 can achieve, R 1 R_1 R1 : rate for user 1 ( R 1 + R 2 R_1+R_2 R1+R2) sum rate
user 1 power P 1 P_1 P1 user 2 power P 2 P_2 P2

Capacity region pairs of achievable ( R 1 , R 2 ) (R_1,R_2) (R1,R2)
在这里插入图片描述

{user1- P 1 ⨁ P_1\bigoplus P1 user2- P 2 P_2 P2} — superuser of power P 1 + P 2 P_1+P_2 P1+P2 and rate R 1 + R 2 R_1+R_2 R1+R2
R 1 + R 2 < 1 2 l o g ( 1 + P 1 + P 2 N 0 ) R_1+R_2<\frac12log(1+\frac{P_1+P_2}{N_0}) R1+R2<21log(1+N0P1+P2)

How to achieve corner points A B
SIC: successive interference cancellation to achieve A. Decode x 1 x_1 x1 assuming x 2 x_2 x2 is noise. Cancel out x 1 x_1 x1 and decode x 2 x_2 x2, assuming x 1 x_1 x1 is known and cancelled.

what rate R 1 R_1 R1 we can get?
R 1 < 1 2 l o g ( 1 + P 1 P 2 + N o ) R_1<\frac 12log(1+\frac{P_1}{P_2+N_o}) R1<21log(1+P2+NoP1)
l o g ( 1 + P 1 P 2 + N o ) + l o g ( 1 + P 2 N o ) = l o g ( 1 + P 1 + P 2 N o ) log(1+\frac{P_1}{P_2+N_o})+log(1+\frac{P_2}{N_o})=log(1+\frac{P_1+P_2}{N_o}) log(1+P2+NoP1)+log(1+NoP2)=log(1+NoP1+P2), so we can achieve A, B

How can we achieve power between A B ?
time sharing. λ \lambda λ fraction of time operate at A. ( 1 − λ 1-\lambda 1λ) fraction of time operate at A
achieve λ A + ( 1 − λ ) B \lambda A+(1-\lambda)B λA+(1λ)B
Any convex combination of A and B is achievable

The difference with an orthogonal method (FDMA or OFDM) for instance, α \alpha α fraction of Bandwidth is given to user one and ( 1 − α 1-\alpha 1α) fraction is given to user 2
(figure)

C = W l o g P N o W C=Wlog\frac{P}{N_oW} C=WlogNoWP (bit/second)
C 1 = α W l o g P 1 α N o W C_1=\alpha Wlog\frac{P_1}{\alpha N_o W} C1=αWlogαNoWP1
C 2 = ( 1 − α ) W l o g P 1 ( 1 − α ) N o W C_2=(1-\alpha) Wlog\frac{P_1}{(1-\alpha) N_o W} C2=(1α)Wlog(1α)NoWP1
in the discrete domain
R 1 = α 2 l o g P 1 α N o R_1=\frac{\alpha}2 log\frac{P_1}{\alpha N_o } R1=2αlogαNoP1
R 2 = ( 1 − α ) 2 l o g P 1 ( 1 − α ) N o R_2=\frac{(1-\alpha)}2 log\frac{P_1}{(1-\alpha) N_o } R2=2(1α)log(1α)NoP1
(figure)

Extension to K-user uplink
y = x 1 + x 2 + . . . + x k + n y=x_1+x_2+...+x_k+n y=x1+x2+...+xk+n
power of user i is P i P_i Pi
we can form a superuser for any subset S ⊂ { 1 , . . . , k } S\subset \{1,...,k\} S{1,...,k} of user. For any S ⊂ { 1 , . . . , k } ,    ∑ i ∈ S R i < 1 2 l o g ( 1 + ∑ i ∈ s P i N o ) S\subset \{1,...,k\},\;\sum_{i\in S}R_i<\frac12log(1+\sum_{i\in s}\frac{P_i}{N_o}) S{1,...,k},iSRi<21log(1+isNoPi)( R i R_i Ri: rate for user i). 2 k − 1 2^{k}-1 2k1 constrains must be satisfied
(3 users "cubic", dominant face)

R 1 < 1 2 l o g ( 1 + P 1 N o ) R 2 < 1 2 l o g ( 1 + P 2 N o ) R 3 < 1 2 l o g ( 1 + P 3 N o ) R 1 + R 2 R 1 + R 3 R 2 + R 3 R 1 + R 2 + R 3 R_1<\frac12log(1+\frac{P_1}{N_o})\\ R_2<\frac12log(1+\frac{P_2}{N_o})\\ R_3<\frac12log(1+\frac{P_3}{N_o})\\ R_1+R_2\\ R_1+R_3\\ R_2+R_3\\ R_1+R_2+R_3 R1<21log(1+NoP1)R2<21log(1+NoP2)R3<21log(1+NoP3)R1+R2R1+R3R2+R3R1+R2+R3
6(=3!) corner point correspond

to one of the 6 possible ordering of user 1 2 3

SIC decode user 1 assuming x 2 , x 3 x_2, x_3 x2,x3 are noise, decode x 2 x_2 x2 give x 1 x_1 x1(cancel out) and assuming x 3 x_3 x3 as noise and finally decode x 3 x_3 x3 given x 1 x_1 x1 and x 2 x_2 x2(cancel out)
R 1 < 1 2 l o g ( 1 + P 1 P 2 + P 3 + N o ) R 2 < 1 2 l o g ( 1 + P 2 P 3 + N o ) R 2 < 1 2 l o g ( 1 + P 3 N o ) R_1<\frac 12log(1+\frac{P_1}{P_2+P_3+N_o})\\ R_2<\frac 12log(1+\frac{P_2}{P_3+N_o})\\ R_2<\frac 12log(1+\frac{P_3}{N_o}) R1<21log(1+P2+P3+NoP1)R2<21log(1+P3+NoP2)R2<21log(1+NoP3)

The sum-capacity(maximum of Sum-rate) is given by
C s u m = 1 2 l o g ( 1 + ∑ k = 1 k P k N o ) C_{sum}=\frac12log(1+\frac{\sum_{k=1}^kP_k}{N_o}) Csum=21log(1+Nok=1kPk)
If the users powers are equal then sum-capacity is the same for orghogonal and non-orthogonal cases

Downlink AWGN channel

(figure)

y 1 = h 1 x + n 1 y 2 = h 2 x + n 2 n 1 & n 2 ∼ N ( 0 , N o ) ∣ h 1 ∣ ≤ ∣ h 2 ∣ y_1=h_1x+n_1\\ y_2=h_2x+n_2\\ n_1 \& n_2\sim \mathcal N(0,N_o)\\ |h_1|\le|h_2| y1=h1x+n1y2=h2x+n2n1&n2N(0,No)h1h2

Superposition coding, interference cancellation methods

strategy super position coding

x = x 1 ( signal intended for user 1 ) + x 2 ( signal intended for user 2 ) x=x_1(\text{signal intended for user 1})+x_2(\text{signal intended for user 2}) x=x1(signal intended for user 1)+x2(signal intended for user 2)
user 1 treats x 2 x_2 x2 as noise R 1 < 1 2 l o g ( 1 + P 1 ∣ h 1 ∣ 2 P 2 ∣ h 1 ∣ 2 + N o ) R_1<\frac12log(1+\frac{P_1|h_1|^2}{P_2|h_1|^2+N_o}) R1<21log(1+P2h12+NoP1h12)
user 2 decodes x 1 x_1 x1 and cancel it out then decode x 2 x_2 x2, R 2 < 1 2 l o g ( 1 + P 2 ∣ h 2 ∣ 2 N o R2<\frac12log(1+\frac{P_2|h_2|^2}{N_o} R2<21log(1+NoP2h22
visual super position coding(user 1 and user 2 both use QPSK):
(figure)

for the orthogonal case, suppose a fraction of bandwidth is user 1 and 1 − α 1-\alpha 1α fraction is allocated for user2
rate of user 1: R 1 = α 2 l o g ( 1 + P 1 ∣ h 1 ∣ 2 α N o ) R_1=\frac{\alpha}2log(1+\frac{P_1|h_1|^2}{\alpha N_o}) R1=2αlog(1+αNoP1h12)
rate of user 2: 1 − α 2 l o g ( 1 + P 2 ∣ h 2 ∣ 2 ( 1 − α ) N o ) \frac{1-\alpha}2log(1+\frac{P_2|h_2|^2}{(1-\alpha) N_o}) 21αlog(1+(1α)NoP2h22)
(figure)

In general, with the ordering
∣ h 1 ∣ ≤ ∣ h 2 ∣ ≤ . . . ≤ ∣ h k ∣ |h_1|\le|h_2|\le...\le|h_k| h1h2...hk
x = x 1 + x 2 + . . . + x k x=x_1+x_2+...+x_k x=x1+x2+...+xk
(figure)

Then the boundary of the achievable capacity region of the k-user downlink AWGN is given by the parameterized rate tuple
R k = 1 2 l o g ( 1 + P k ∣ h k ∣ 2 N o + ( ∑ j = 1 k P j ) ∣ h k ∣ 2 ) k = 1 , 2 , . . . , K R_k=\frac12log(1+\frac{P_k|h_k|^2}{N_o+(\sum_{j=1}^kP_j)|h_k|^2})\qquad k=1,2,...,K Rk=21log(1+No+(j=1kPj)hk2Pkhk2)k=1,2,...,K
where P = ∑ j = 1 k P j P=\sum_{j=1}^kP_j P=j=1kPj is the power splits among the users

Multiuser fading channels

The single user case:
Two types of fading { 1) slow fading 2) fast fading \begin{cases} \text{1) slow fading} \\ \text{2) fast fading} \end{cases} {1) slow fading2) fast fading
generic model for fading y = h x + n ,    h : channel gain y=hx+n,\;h:\text{channel gain} y=hx+n,h:channel gain

typical model for the distribution of h h h is the Rayleigh distribution

The received SNR: ∣ h ∣ 2 S N R − ( t r a n s m i t    S N R ) |h|^2SNR-(transmit\; SNR) h2SNR(transmitSNR)
R: transmission Rate
Communication is successful is R < 1 2 l o g ( 1 + ∣ h ∣ 2 S N R ) R<\frac 12log(1+|h|^2SNR) R<21log(1+h2SNR)

probability of outage: P o u t ( R ) = P { 1 2 l o g ( 1 + ∣ h ∣ 2 S N R ) ≤ R } P_{out}(R)=P\{\frac 12log(1+|h|^2SNR)\le R\} Pout(R)=P{21log(1+h2SNR)R} — depends on the distribution of h

For example: for Rayleigh fading channel(pdf of h = h 2 e − h 2 2 δ 2 , δ h=\frac h2e^{-\frac {h^2}{2\delta^2}},\delta h=2he2δ2h2,δ is the parameter of fading), P o u t ( R ) = 1 − e x p ( − 2 R − 1 S N R ) P_{out}(R)=1-exp(-\frac{2^R-1}{SNR}) Pout(R)=1exp(SNR2R1)
at high SNR, P o u t ( R ) ∼ 2 R − 1 S N R P_{out}(R)\sim \frac{2^R-1}{SNR} Pout(R)SNR2R1(decays out 1 S N R \frac1{SNR} SNR1)

Notions of capacity: ε \varepsilon ε — outage capacity P o u t ( R ) ≤ ε P_{out}(R)\le \varepsilon Pout(R)ε
Let F be the cdf of ∣ h ∣ 2 |h|^2 h2, then outage = 1 2 l o g ( 1 + F − 1 ( 1 − ε ) S N R ) \frac12log(1+F^{-1}(1-\varepsilon)SNR) 21log(1+F1(1ε)SNR)

Another notion of capacity ergodic capacity ∫ n 1 2 l o g ( 1 + ∣ h ∣ 2 S N R ) f H ( h ) d h \int_n\frac12log(1+|h|^2SNR)f_H(h)dh n21log(1+h2SNR)fH(h)dh
f H ( h ) f_H(h) fH(h): pdf of h

distribution of h across time is f H ( h ) f_H(h) fH(h) ergodic capacity: average of capacity across time as the # of time-frames grows large

Slow fading: the communication delay (time frame) is relatively short compared with channel coherence time

In fast fading: y = h x + n y=hx+n y=hx+n
h : h: h: i.i.d for each symbol transmission

for transmitting L symbols, outage probability P o u t ( R ) = P { 1 L ∑ l = 1 L 1 2 l o g ( 1 + ∣ h l ∣ 2 S N R ) < R } P_{out}(R)=P\{\frac1L\sum_{l=1}^L\frac12log(1+|h_l|^2SNR)<R\} Pout(R)=P{L1l=1L21log(1+hl2SNR)<R}

uplink fading channel:
slow fading, suppose we have k users
P o u t u p l i n k ( R ) = P { 1 2 l o g ( 1 + S N R ∑ k ∈ S ∣ h k ∣ 2 ) < ∣ s ∣ R    f o r    s o m e    S C    { 1 , 2 , . . . , k } } P_{out}^{uplink}(R)=P\{\frac12log(1+SNR\sum_{k\in S}|h_k|^2)<|s|R \;for\; some \;SC \;\{1,2,...,k\}\} Poutuplink(R)=P{21log(1+SNRkShk2)<sRforsomeSC{1,2,...,k}}
suppose all users are transmitting at rate R R R
At low SNR, this can be approximates
P o u t u p l i n k = P { 1 2 ∣ h k ∣ 2 S N R < R    f o r    s o m e    k ∈ { 1 , 2 , . . . , k } } ≈ k P o u t P_{out}^{uplink}=P\{\frac12|h_k|^2SNR<R \;for\; some \;k\in\{1,2,...,k\}\}\approx kP_{out} Poutuplink=P{21hk2SNR<Rforsomek{1,2,...,k}}kPout
Ergodic capacity (for both slow and fast fading)
C s u m = E [ 1 2 l o g ( 1 + ∑ k = 1 k ∣ h k ∣ 2 P ) ] ∑ k = 1 k ∣ h k ∣ 2 P : S N R , N o R 1 + R 2 + . . . + R k < 1 2 l o g ( 1 + ∑ k = 1 k ∣ h k ∣ P o ) ∑ k = 1 k ∣ h k ∣ P o : e f f e c t i v e W R o f t h e s u p e r u s e r C_{sum}=E[\frac12log(1+\sum_{k=1}^k|h_k|^2P)]\\ \sum_{k=1}^k|h_k|^2P:SNR,N_o\\ R_1+R_2+...+R_k<\frac12log(1+\sum_{k=1}^k|h_k|P_o)\\ \sum_{k=1}^k|h_k|P_o:effective WR of the superuser Csum=E[21log(1+k=1khk2P)]k=1khk2P:SNR,NoR1+R2+...+Rk<21log(1+k=1khkPo)k=1khkPo:effectiveWRofthesuperuser

How does this compose with the sum-capacity of uplink without fading?
(Assuming E [ ∣ h k ∣ 2 ] = 1 E[|h_k|^2]=1 E[hk2]=1)
By Jensen’s inequality:
E [ l o g ( 1 + ∑ k = 1 k ∣ h k ∣ 2 P N o ) ] ≤ l o g ( 1 + ∑ k = 1 k ∣ h k ∣ 2 P N o ) = l o g ( 1 + k P N o ) E[log(1+\frac{\sum_{k=1}^k|h_k|^2P}{N_o})]\le log(1+\frac{\sum_{k=1}^k|h_k|^2P}{N_o})=log(1+\frac{kP}{N_o}) E[log(1+Nok=1khk2P)]log(1+Nok=1khk2P)=log(1+NokP)
l o g ( 1 + k P N o ) log(1+\frac{kP}{N_o}) log(1+NokP): sum-capacity without fading

未完,接Advances in Wireless Communication 课堂笔记(下)

  • 12
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值