对于变量有二个以上的情况,贝式定理亦成立。P(A|B,C)=P(B|A)*P(A)*M / ( P(B)*P(C|B) ).则M=()。
我将通过求出M的方式来告诉大家多变量条件概率公式如何推导。
首先大家都知道一个耳熟能详的条件概率公式P(A|B)=P(A,B)/P(B),那么我们可以将B,C同时发生记为事件T,所以P(A|T)=P(A,T)/P(T)。则有:P(A|B,C)=P(A,B,C)/P(B,C)
1、
P(A,B,C)=P(C,A,B)=P(C|A,B)*P(A,B)=P(C|A,B)*P(B,A)=P(C|A,B)*P(B|A)*P(A)
2、
P(B,C)=P(C|B)*P(B)
综上所述:M=P(C|A,B)
由上述求解M的过程可知,M的结果跟其分子分母的形式有关,所以多变量情况下贝叶斯定理依然成立但是形式不唯一。
多变量条件概率公式的推导(多变量贝叶斯公式)
最新推荐文章于 2025-03-05 21:16:27 发布