多变量条件概率公式的推导(多变量贝叶斯公式)

本文详细解析了在多个变量条件下的贝叶斯定理推导过程,展示了如何通过分解联合概率来计算复杂的条件概率,揭示了M在公式中的具体含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于变量有二个以上的情况,贝式定理亦成立。P(A|B,C)=P(B|A)*P(A)*M / ( P(B)*P(C|B) ).则M=()。
我将通过求出M的方式来告诉大家多变量条件概率公式如何推导。
首先大家都知道一个耳熟能详的条件概率公式P(A|B)=P(A,B)/P(B),那么我们可以将B,C同时发生记为事件T,所以P(A|T)=P(A,T)/P(T)。则有:P(A|B,C)=P(A,B,C)/P(B,C)
1、
P(A,B,C)=P(C,A,B)=P(C|A,B)*P(A,B)=P(C|A,B)*P(B,A)=P(C|A,B)*P(B|A)*P(A)
2、
P(B,C)=P(C|B)*P(B)
综上所述:M=P(C|A,B)
由上述求解M的过程可知,M的结果跟其分子分母的形式有关,所以多变量情况下贝叶斯定理依然成立但是形式不唯一。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值