1. 从Numpy创建Tensor
import torch
import numpy as np
a = np.array([2, 3.3])
b = torch.from_numpy(a) # torch.DoubleTensor
注意:该种创建方式a与b共享内存,修改其中一个另外一个也会改变,需要注意。
2. 从List创建Tensor
a = torch.FloatTensor([2, 3.3])
b = torch.tensor([2, 3.3])
注意:小写的tensor
只接受现有的数据;而大写的Tensor
相当于就是FloatTensor
,既可以接收现有的数据,也可以接受shape来创建指定形状的Tensor。为了避免混淆,建议接收现有数据的时候使用tensor,指定shape的时候使用Tensor。
3. 指定维度创建Tensor
# 生成2行3列的数据
a = torch.empty(2, 3)
b = torch.FloatTensor(2, 3)
c = torch.IntTensor(2, 3)
注意:通过指定维度创建的Tensor,初始化的值是随机的,数据不规则,容易出现问题。
4. 设置Tensor的默认类型
使用torch.tensor
传入浮点数元素,或者使用torch.Tensor
仅指定维度时,生成的默认是FloatTensor,也可以修改默认设置使其默认是其它类型的。
print(torch.tensor([1, 2.2]).type())
torch.set_default_tensor_type(torch.DoubleTensor)
print(torch.tensor([1, 2.2]).type())
运行结果:
torch.FloatTensor
torch.DoubleTensor
5. 随机初始化创建Tensor
(1) rand(shape):生成shape维度的并且随机均匀采样0~1之间的数据
(2)rand_like(Tensor):形如*_like()函数,接收一个Tensor,并根据Tensor的shape生成对应维度的随机均匀采样的数据
(3)randint(min, max, shape):生成最小值为min,最大值为max(应该是不能等于max),维度为shape的随机均匀采样的数据
(4)randn(shape):生成均值为0,方差为1,shape维度的正态分布数据
示例代码:
# 采样自0~1均匀分布
a = torch.rand(3, 3)
# 形如*_like接受一个Tensor,将这个Tensor的shape读取出来之后在送入*所表示的函数
# 下面的rand_like(a)即将a的shape=3,3读出来传给torch.rand()函数
b = torch.rand_like(a) # 相当于执行了torch.rand(3,3)
# 在区间[1,10)上随机采样,生成shape=2,2的LongTensor
c = torch.randint(1, 10, [2, 2])
# 采样自N(0,1)
d = torch.randn(3, 3)
输出结果:
tensor([[0.0242, 0.4888, 0.8328],
[0.6072, 0.4250, 0.6537],
[0.4467, 0.5544, 0.5739]])
tensor([[0.7346, 0.4328, 0.2864],
[0.6549, 0.7066, 0.8149],
[0.2559, 0.8357, 0.6266]])
tensor([[1, 2],
[6, 7]])
tensor([[ 0.5008, -1.0735, -0.6840],
[ 1.0555, -0.5063, 0.7005],
[-0.3162, -1.8131, -1.5876]])
6. 使用相同元素构建Tensor
# shape=2,3,所使用的相同的元素为7
b = torch.full([2, 3], 7)
输出结果:
tensor([[7., 7., 7.],
[7., 7., 7.]])
注意:shape的指定方式是list方式。
指定list = [ ],可以生成一个标量:
v = torch.full([], 10)
print(v)
print(v.dim())
输出结果:
tensor(10.)
0
7. 指定参数的正态分布Tensor
# 指定均值和标准差
a = torch.normal(mean=torch.full([10], 0), std=torch.arange(1, 0, -0.1))
上面参数mean = [0, 0, 0, 0, 0, 0, 0, 0, 0,0],std = [1, 0.9, ... , 0.1],得到的结果是1x10的Tensor,如果想得到其它shape的正态分布,需要在1x10的基础上reshape 为其它维度。
输出结果:
tensor([ 0.6890, -1.2106, -0.0755, -0.0288, -0.2386, 0.2977, 0.1251, -0.2366,
0.0097, -0.1684])
8. 有序数列Tensor
a = torch.arange(0, 10) # 不包含10,默认步长为1
print(a)
b = torch.arange(0, 10, 2)
print(b)
输出结果:
tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
tensor([0, 2, 4, 6, 8])
注意torch.range()
是包含结尾的,但是已经被弃用了,一律用arange。
9. 生成等分序列Tensor
c = torch.linspace(0, 10, 4)
print(c)
生成0~10之间的包括10,4个等分数列Tensor:
tensor([ 0.0000, 3.3333, 6.6667, 10.0000])
10. logspace(n, m, step=s)
从10的n次方取到10的m次方,指数是等差的,也就是元素值是等比的。
e = torch.logspace(0, -1, 5)
print(e)
输出结果:
tensor([1.0000, 0.5623, 0.3162, 0.1778, 0.1000])
11. 全0的Tensor
a = torch.zeros([3, 4])
输出结果:
tensor([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
12.全1的Tensor
b = torch.ones([3, 4])
输出结果:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
13. 对角阵Tensor
c = torch.eye(3, 4) # 只能是二维的,传入dim=2的shape
输出结果:
tensor([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.]])
也可以只给一个参数n,得到n阶的对角方阵:
c = torch.eye(4)
print(c)
输出结果:
tensor([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
14. randperm
使用randperm可以生成一个从0开始的、已经打乱的连续索引Tensor,用它可以对其它Tensor做shuffle。特别是在有几个需要保持一致顺序的Tensor时,用相同的索引Tensor就能保证shuffle之后的Tensor在那个维度上的顺序一致了。
import torch
# 两个Tensor的shape[0]是相同的,都是3
a = torch.rand(3, 1)
b = torch.rand(3, 1)
print(a, b, sep='\n')
print("-" * 20)
# 制造一个[0,3)的索引序列
idx = torch.randperm(3)
print(idx)
print("-" * 20)
# 给a,b做shuffle,保证第一个维度在shuffle后的对应关系不变
a_sf = a[idx]
b_sf = b[idx]
print(a_sf, b_sf, sep='\n')
输出结果:
tensor([[0.2253],
[0.6864],
[0.9565]])
tensor([[0.7317],
[0.0779],
[0.3842]])
--------------------
tensor([2, 1, 0])
--------------------
tensor([[0.9565],
[0.6864],
[0.2253]])
tensor([[0.3842],
[0.0779],
[0.7317]])
---------------------