起一个数的平方根_初中数学之平方根(2)导学案

初中数学之平方根(2)导学案

学习目标:

1.了解平方根的概念,会用根号表示数的平方根.

2.了解开平方与平方互为逆运算,会用平方根的概念求某些非负数的平方根.

学习重点:

了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根.

学习难点:

平方根的意义.

自主学习

一、复习巩固:

1.填空:5的平方是 ; eq f(3,4)的平方是 ;0的平方是 ;

(-3)2= ;(- eq f(3,5))2= .

总结:观察上述结果,发现:任意有理数的平方是 数.

2.我们知道:4的平方是16, 的平方也是16,所以 的平方是16.

类似的: 的平方是25; 的平方是121; 的平方是 eq f(25,49);

的平方是1 eq f(7,9); 的平方是0; 的平方是-4.

3.算术平方根的概念:

二、新知讲解:

一般在,如果一个数x的平方等于a,那么这个数叫做a的平方根,也称为二次方根.也就是说,如果 ,那么x就叫做a的    .记作    .

初步感悟:

① 因为

= , = ,所以 ±5是 的平方根 .

② 平方得81的数是 ,因此81的平方根是 .

③ 9的平方根是 ;

的正的平方根是 ;1.44的负的平方根是 .

讨论提高:

① 4有 个平方根,它们互为 数,记作 .

② 0有 个平方根,0的平方根是 .

③ -4、-8、-36有平方根吗?为什么?

总结:一个数的平方根有几个?

三、例题研讨:

例3 求下列各数的平方根:

(1)64; (2)

; (3)0.0004; (4); (5)11

97d53edff9d9c58717da44b57789f91c.png
65ff2c05137903b7a4b38bc67b7b8fc8.png
b88fe9a1313c9560064cc88ba85c70b0.png
7131714577e3b69ff25050e2242b536b.png
98c8c6684780ff72cc300793a8b750be.png
<think>嗯,用户想查询Qwen3 MCP本地部署的配置。首先,我需要回忆一下之前提供的引用内容,看看有没有相关的信息。引用[1]提到了如何使用Ollama本地运行Qwen3支持MCP工具使用,里面有具体的代码示例,配置步骤,这可能对用户有帮助。引用[2][3]也提到了本地部署的方法,比如使用Ollama、vLLM等工具。所以应该结合这些信息来回答。 用户的问题是关于Qwen3 MCP本地部署配置,需要明确MCP是什么。根据引用里的描述,MCP可能是指某种服务或协议,比如在工具配置里提到的&#39;mcpServers&#39;,有timefetch的命令,可能获取时间或数据有关。但用户可能更关注如何配置环境来支持MCP功能。 首先,我需要整理部署的步骤。根据引用[1],步骤包括配置本地模型、定义工具(包括MCP)、初始化助手、发送消息等。所以回答的结构应该分步骤说明,比如环境准备、模型配置、工具集成、运行验证等。 然后,要确保LaTeX格式正确,比如行内公式用$...$,独立公式用$$...$$。不过这个问题可能涉及代码较多,数学公式可能较少,但如果有参数或变量,需要正确应用格式。 还需要生成相关问题,可能涉及优化部署、验证方法、与其他工具的比较等。要确保问题相关且有用。 另外,用户提到的引用需要正确标注。例如,引用[1]中的代码示例,引用[2]中的部署工具,引用[3]中的模型版本特性。需要确认这些信息是否准确对应到回答中。 可能需要注意用户的环境,比如是否需要安装Ollama,如何下载模型,配置API地址等。在引用[2]中提到了使用Ollama安装Qwen3-8B模型,用户可能需要先完成这些前置步骤。此外,引用[3]提到使用vLLM进行Docker部署,可能可以作为另一种部署方式的参考,但用户当前的问题更关注MCP的配置,所以可能以Ollama为主。 还需要检查代码是否正确,比如Python代码中的缩进、参数设置是否正确。例如,在配置llm_cfg时,model_server的地址是否正确,api_key是否为&#39;EMPTY&#39;。工具列表中的结构是否正确,比如是否包含mcpServerscode_interpreter。 最后,确保回答使用中文,结构清晰,分步骤说明,附上相关问题引用标注。</think>### Qwen3 MCP本地部署配置详解 Qwen3 MCP本地部署的核心是通过Ollama框架实现模型服务调用,结合MCP服务扩展工具能力。以下是具体配置流程: #### 一、基础环境准备 1. 安装Ollama服务(需v0.1.34+) ```bash curl -fsSL https://ollama.com/install.sh | sh ``` 2. 下载Qwen3模型(以8B为例): ```bash ollama run qwen3:8b ``` #### 二、模型服务配置 ```python llm_cfg = { &#39;model&#39;: &#39;qwen3&#39;, # 模型标识符 &#39;model_server&#39;: &#39;http://localhost:11434/v1&#39;, # Ollama默认API地址 &#39;api_key&#39;: &#39;EMPTY&#39;, # 本地部署无需验证密钥 &#39;temperature&#39;: 0.7 # 温度参数控制生成随机性 } ``` > 注:建议显存≥16GB,内存≥32GB以保证流畅运行[^2] #### 三、MCP工具集成 ```python tools = [ { # MCP服务定义 &#39;mcpServers&#39;: { &#39;time&#39;: { &#39;command&#39;: &#39;uvx&#39;, &#39;args&#39;: [&#39;mcp-server-time&#39;, &#39;--local-timezone=Asia/Shanghai&#39;] }, &#39;fetch&#39;: { &#39;command&#39;: &#39;uvx&#39;, &#39;args&#39;: [&#39;mcp-server-fetch&#39;] } } }, &#39;code_interpreter&#39; # 代码解释器工具 ] ``` 该配置实现: - 时区时间服务:通过`mcp-server-time`获取本地时间 - 数据获取服务:通过`mcp-server-fetch`执行数据抓取 - 代码解释器:支持Python代码执行[^1] #### 四、助手初始化与调用 ```python bot = Assistant(llm=llm_cfg, function_list=tools) messages = [{ &#39;role&#39;: &#39;user&#39;, &#39;content&#39;: &#39;查询当前上海时间获取最新Qwen技术文档&#39; }] for response in bot.run(messages): print(response[-1][&#39;content&#39;]) ``` 典型输出结构: ``` 当前上海时间:2024-06-20 15:30:00 CST 已获取最新文档:https://qwenlm.github.io/blog/... ``` #### 五、验证部署 1. 检查Ollama服务状态: ```bash curl http://localhost:11434/api/tags ``` 2. 测试MCP服务响应: ```python import requests response = requests.post( &#39;http://localhost:11434/v1/chat/completions&#39;, headers={&#39;Authorization&#39;: &#39;Bearer EMPTY&#39;}, json={&#39;model&#39;: &#39;qwen3&#39;, &#39;messages&#39;: [{&#39;role&#39;:&#39;user&#39;,&#39;content&#39;:&#39;当前时间&#39;}]} ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值