仅需1/3硬件成本,性能全面超越DeepSeek-R1模型!
时隔半年,全新一代Qwen-3系列模型正式发布!在经历了Claude 3.7、Gemini 2.5和GPT-4.1模型发布后,Qwen-3模型再次扛起了全球开源大模型的大旗,性能一举追平全球最强Gemini 2.5 Pro模型,并且也是全球首款混合推理开源模型,同时还具备了极强的MCP能力!
我们团队也是通宵进行了模型性能测试并制作了保姆级模型安装部署完整指南和代码⬇️进入社区即可领取~
Qwen-3新款模型总共包含6个型号,从最小的0.6B到最大的Qwen3-235B-A22B不等,可以满足从移动端部署到企业级应用各类场景,
而其中最大的Qwen3-235B-A22B是在推理、数学、编程和对话等性能方面全面超越DeepSeek-R1,并且几乎达到目前全球最强大模型Gemini 2.5 Pro的水准。
这里的235B-A22B是混合专家模型的专属编号,指的是模型总共是235B的参数量,而每次推理的时候会激活(Activate)22B,因此称作235B-A22B模型。
此外,Qwen-3全系列模型都是混合推理模型,也就是一款模型拥有两种形态,推理形态下会具备思考过程,耗时相对较长,但能力显著提升,适用于处理复杂推理任务,
而普通形态下则不会有<think>思考过程,响应速度更快,更适合进行普通对话或长文本编写任务。
同时,Qwen-3全系列模型都大幅提升了Function calling功能,也就是所谓的MCP能力,能够更加准确的识别外部函数,并且能够进行多工具并联和串联调用,因此能够更加高效的进行Agent开发。
根据官方给出的示例,在思考模式下,让Qwen-3旗舰模型调用MCP工具统计并绘制某GitHub项目的历史星标增长图,此时Qwen-3模型能够自主围绕复杂任务进行思考和拆解,并围绕5项外部工具进行任务规划和工具调用,整体来看模型的Agent性能非常强悍。
并且,如果能够适时的开启不同的模式,比如工具识别的时候采用推理模式,而普通问答的时候采用普通模式,则可以保障工具调用准确率的同时,兼顾执行效率。
而更关键的是,Qwen-3旗舰模型235B-A22B,最低仅需4卡H20服务器即可部署,并且Qwen-3模型还公布了FP8精度的权重,最低可以在4卡H800进行高效推理。相比DeepSeek-R1模型运行需要1300多G显存,需要双节点8卡A100服务器才能运行,Qwen-3旗舰模型的硬件要求几乎是DeepSeek-R1模型的1/3,在运行成本上Qwen3模型同样优势非常明显。
此外,Qwen3-235B-A22B也是MoE模型,因此也可以使用Ktransformers框架进行CPU和GPU混合推理。不难看出,Qwen3模型也确实当下最适合企业部署应用的开源大模型没有之一,接下来我们团队还将继续制作基于Qwen3 Agent开发实战教程并上线至赋范大模型技术社区,大家扫码即可加入社区。
当然啦,除了旗舰模型Qwen3-235B-A22B外,本次发布的其他几款Qwen3系列模型性能也非常强悍,为了避免混淆,我这里整理了各模型的硬件要求和性能排名天梯图,大家可以对照理解。
首先从性能层面来说,Qwen3全系列模型的性能都非常不错,其中Qwen3的4B模型综合性能就和DeepSeek-V3模型相当,而Qwen3-30B-A3B的性能则全面超越了GPT-4o。
而在特定场景的使用选择上,0.6B模型是名副其实的端侧模型,面向移动端场景进行实用,而1.7B和4B模型,则非常适用于进行特定领域的微调任务,例如微调一个数学模型或者前端任务的编程模型等,而14B、30B-A3B和32B的模型,则是名副其实的企业级应用模型了。
一次性发布众多型号的模型以覆盖不同的应用场景,这是Qwen2.5代模型以来的传统了,江湖人称“源神”(开源的神),名不虚传。
而除了开源权重外,本次Qwen-3还公布了这组模型模型的训练流程。不出所料,这次Qwen3所采用了和DeepSeek-R1模型类似的基于强化学习的后训练流程,在预训练模型的基础上,围绕235B-A22B和32B这两款大尺寸模型,进行了非常复杂的四阶段的后训练,使其大幅提升了推理能力的同时,还掌握了普通问答模式和推理模式切换的方法,并且还额外提升了文本编写能力。
接下来在完成了大尺寸的模型训练后,Qwen进一步采用了R1提出的模型蒸馏方法,使用大尺寸模型创建的数据集,对其他小尺寸的预训练模型进行蒸馏,并最终得到了包括30B-A3B、14B、8B等模型在内的一组蒸馏模型。
不过和R1模型不同的是,这组小尺寸的蒸馏模型的base模型也是Qwen3代模型原生训练得到的,并不是使用了比如Llama模型作为base模型进行蒸馏。也就是说,相比DeepSeek-R1,Qwen3的模型训练流程也进一步进行了优化,相信这个流程也会给未来的开源模型训练,提供极有价值的参考。
今年以来,在DeepSeek-R1模型的带动下,全球基座模型性能呈现爆发式增长,从年初的Claude 3.7,Gemini 2.5 Pro,再到上个月的GPT-4.1,每一次模型性能的飞跃都颠覆想象。但是比较令人遗憾的是,自DeepSeek-R1之后,开源技术圈鲜有突破,上个月Llama-4被曝作弊,Meta自断臂膀,而谷歌Gemma3、微软Phi4和智谱GLM4开源的模型也都是小尺寸模型,很难达到工业级应用水准。而正因如此,这次Qwen-3的发布对于整个大模型技术圈来说弥足珍贵。Qwen3模型虽说标号是3,但Qwen模型是每隔0.5算是一代,因此这已经是千问系列的第五代模型了。正所谓流水不争先,争的是滔滔不绝,历经两年时间、五个版本、总共上百款模型,现在的Qwen模型已经从当年一众开源模型中的普普通通的模型,逐渐脱颖而出,成为当之无愧的最强开源模型,也是全球大模型开源圈的中流砥柱。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】