齐次矩阵转化为欧拉角坐标系_RPY角的计算 机器人常用坐标系及变换方程.ppt

绕k轴旋转dθ 等价于分别绕三个轴X,Y,Z轴旋转δx,δy, δz。令kx dθ=δx, ky dθ=δy, kz dθ=δz 并代入上式可得: —1 [例] 假设有一个坐标系A为: 相对于基础坐标系的微分平移为 ,微分旋转为 ,试求与d和δ相应的A的微分变换。 [解] 首先构造微分平移和旋转变换 三、两直角坐标系间的微分移动的关系——微分变换 前面讨论了用基准坐标系和当前T坐标系描述的微分运动,分别为 和 ,不同坐标系的微分运动 和 的关系为: 所以有: 这个变换方程如同前面变换方程一样,可以用一个变换图来表示,如右图所示。由图也可以直接得到上式。 方程2很重要,因为它把相对于不同的坐标系之间的微分变化联系起来了。我们首先展开方程右端的矩阵乘积,展开过程中进行了简化,可得出微分变化向量d和δ的元素之间的直接关系。变换T称为微分坐标变换。 —2 如果把微分坐标变化T的元素用向量n、o、a和P描述为 式中,d和δ就是微分旋转和微分平移。将上式左乘 可得 由于n、o、a正交,所以 —3 —4 由式1定义为: 令式3和式4相等,我们就利用相对基础坐标系来描述的微分旋转和平移的向量(δ和d),得到相对于坐标系T来描述的微分旋转和平移的向量,即 —6 —5 例:假定有与前例相同的坐标系以及微分平移和微分旋转 试求坐标系A中等价的微分平移和微分旋转。 解 用 首先形成 然后加上d 利用式5和6,计算 利用式4,根据 构成 三、机器人的雅各比矩阵 对机器人来讲,T6在位置和方向上的微分变化,是由关节坐标中的微分变化dqi引起的。我们定义一个微分变化的变换△i ,如果关节i是旋转关节, △i 就表示绕z轴的一个单位微分旋转;如果该关节是移动关节,△i则表示沿z轴的一个微分平移。在这两种情况中,微分变化的变换对于关节i-1的坐标也适用,记为△i,j-1 我们可以利用T6 坐标中的微分变化△i,T6 以及任意关节坐标i的微分变换来写出一个微分变化d T6 的关系式,即 T6在位置和方向上的微分变化,作为六个关节坐标的函数可以写成一个6x6的矩阵。 雅各比矩阵的每一列对应于每个关节坐标的微分变化,即由微分平移和微分旋转矢量的变化所组成。 [解] (1) 设定机器人各杆的坐标系 按D—H坐标系建立各杆的坐标系如图2-5所示。 将o0z0设置在关节1的转轴上,o0和o1重合; o1z1 o2z2分别沿关节2、3的转轴, o1z1 // o2z2。z3与z2轴的交点为o3; o2和o3重合, d3=0, o3x3y3z3并非置于臂的终端。 o3z3是腕的第一个转轴。 z4与z3的交点为o4 ,设在臀的终端,是腕结构的中心, o4z4是腕的第二个转轴; z5与z4的交点为o5。 o4和o5重合, o5z5是腕的第三个转轴。 o6x6y6z6为终端坐标系,该坐标系考虑了工具长度d6。y6、x6、z6的单位向量分别记为n、o、a。 (2) 确定连杆的D-H参数和关节变量 连杆 变量 α a d cosα sinα 1 θ1 -90° 0 0 0 -1 2 θ2 0° a2 d2 1 0 3 θ3 90° 0 0 0 1 4 θ4 -90° 0 d4 0 -1 5 θ5 90° 0 0 0 1 6 θ6 0° 0 d6 1 0 (3) 求两杆间的位姿矩阵Ai 根据表2-1所示的D-H参数和公式(1)可求得Ai 其中: (4) 求末杆位姿矩阵 令: 可得 式中: …..(5) 根据式(3)和式(4)可得: 式中: ……..(6) 若令θ1=900,θ2=00 , θ3=900 , θ4=00 θ5=00 θ6=00,并将有关常量代入T6矩阵,则有: [例2] 斯坦福机器人的结构示意图如图2-6,它由球面坐标臂(RRP)和欧拉腕组成。求Ai (i=1,2,3,4,5,6)及T6的表达式。 [解] (1) 设定机器人各杆的坐标系 按D—H坐标系建立各杆的坐标系如图2-6所示。 图中z0轴沿关节1的轴,zi轴沿关节(i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值