层与特征融合_常见特征金字塔网络FPN及变体

本文深入探讨了特征金字塔网络FPN在目标检测中的应用,包括FPN结构概述、最简单的FPN结构、无FPN的多stage结构、简单双向融合如BiFPN,以及Recursive-FPN循环特征金字塔网络。FPN通过融合不同尺度的特征图,增强了特征表达能力,提高了目标检测的准确性。
↑↑↑关注后"星标"天池大数据科研平台人人都可以玩转大数据

 阿里云天池发布 

来源:机器学习炼丹术     作者:机器学习炼丹术

文章目录:

  • 1 概述

  • 2 FPN结构概述

  • 3 最简单的FPN结构

  • 4 无FPN的多stage结构

  • 5 简单双向融合

  • 6 BiFPN

  • 7 Recursive-FPN循环特征金字塔网络

1 概述

FPN是Feature Parymid Network的缩写。

目标检测任务中,像是在YOLO1中那种,对一个图片使用卷积来提取特征,经过了多个池化层或者stride为2的卷积层之后,输出了一个小尺度的特征图。然后再这个特征图中来做目标检测

换句话说,最后得到的目标检测的结果,完全是依赖于这一个特征图,这种方法叫做单stage物体检测算法

可想而知,这种方法很难有效的识别出不同大小的目标,所以产生了多stage检测算法,其实就是要用到了特征金字塔FPN。

简单的说就是:一个图片同样是经过卷积网络来提取特征,本来是经过多个池化层输出一个特征图,现在是经过多个池化层,每经过一个池化层都会输出一个特征图,这样其实就提取出了多个尺度不同的特征图。

然后尺度不同的特征图,丢进特征金字塔网络FP

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值