↑↑↑关注后"星标"天池大数据科研平台人人都可以玩转大数据
阿里云天池发布
来源:机器学习炼丹术 作者:机器学习炼丹术文章目录:
1 概述
2 FPN结构概述
3 最简单的FPN结构
4 无FPN的多stage结构
5 简单双向融合
6 BiFPN
7 Recursive-FPN循环特征金字塔网络
1 概述
FPN是Feature Parymid Network的缩写。
目标检测任务中,像是在YOLO1中那种,对一个图片使用卷积来提取特征,经过了多个池化层或者stride为2的卷积层之后,输出了一个小尺度的特征图。然后再这个特征图中来做目标检测。
换句话说,最后得到的目标检测的结果,完全是依赖于这一个特征图,这种方法叫做单stage物体检测算法。
可想而知,这种方法很难有效的识别出不同大小的目标,所以产生了多stage检测算法,其实就是要用到了特征金字塔FPN。
简单的说就是:一个图片同样是经过卷积网络来提取特征,本来是经过多个池化层输出一个特征图,现在是经过多个池化层,每经过一个池化层都会输出一个特征图,这样其实就提取出了多个尺度不同的特征图。
然后尺度不同的特征图,丢进特征金字塔网络FP

本文深入探讨了特征金字塔网络FPN在目标检测中的应用,包括FPN结构概述、最简单的FPN结构、无FPN的多stage结构、简单双向融合如BiFPN,以及Recursive-FPN循环特征金字塔网络。FPN通过融合不同尺度的特征图,增强了特征表达能力,提高了目标检测的准确性。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



