Q学习使用ROS和Gazebo的turtlebot的迷宫导航

本文介绍了一种使用Q学习算法训练turtlebot在迷宫中避开障碍物自主导航的方法。通过奖励和惩罚机制,代理学习最优策略,实现无碰撞的迷宫探索。项目包括演示视频和详细步骤,展示了Q学习在机器人导航中的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://github.com/senthilarul/QLearning-ENPM808X

自动机器人是影响科技行业的下一个重要因素。随着谷歌,亚马逊和苹果等科技巨头在自主技术上投入巨资,可以肯定这些机器人将在不久的将来对我们的生活产生重大影响。

当机器人处于未开发的环境中时,它不知道要为该环境执行的最佳操作集,以便在不发生冲突的情况下自主导航。在这个软件中,我们以一个导航迷宫的turtlebot为例。虽然Turtlebot处于操作环境中,但在导航整个环境之前几乎不可能为这些状态定义所有可能的状态和操作。即使这种情况是可能的,也可能不适合新环境。在这些情况下,使用一系列奖励来训练代理执行它所执行的随机操作要容易得多。这是Q学习发挥作用的地方。在给定状态的情况下,当代理执行期望的动作(不与障碍物碰撞)时,代理被积极奖励。同样的,当它执行不良行为(如与障碍物碰撞)时会得到负面回报。使用奖励作为学习输入时,很容易在所有状态和操作上定义数值评估函数,并将最优策略建立在此评估函数上。

该项目将实施一种Qlerning算法,用于训练turtlebot通过避开障碍物在迷宫内创建(在凉亭上创建)。该项目将通过使用演示来显示算法的工作,该演示显示在迷宫内导航的turtlebot而不会发生碰撞。

文件

该演示文稿位于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值