小蓝有一个大箱子,内部的长宽高分别是 200 、250 、240 (单位:毫米),他要用这个大箱子来放一些同样大小的小盒子,小盒子的外部长宽高分别是30、40、50 (单位:毫米)。小盒子允许从各个方向旋转(包括可以平放和倒放)。
请问小蓝最多可以在一个大箱子里面放多少个小盒子。
这是一个 三维空间内盒子堆叠最大数量问题,关键在于:小盒子可以旋转任意方向,也就是说它的长宽高可以任意对应大箱子的长宽高。
已知条件:
**大箱子尺寸:**200mm × 250mm × 240mm
**小盒子尺寸:**30mm × 40mm × 50mm(可旋转)
思路:
枚举小盒子的所有排列方式(旋转方向):
小盒子的尺寸是 (30, 40, 50),它可以有 3! = 6 种排列组合:
(30, 40, 50)
(30, 50, 40)
(40, 30, 50)
(40, 50, 30)
(50, 30, 40)
(50, 40, 30)
对于每种排列方式,计算在每个维度上最多能放几个小盒子:
比如,如果选择 (50, 40, 30),那么:
沿 200mm:能放 200 ÷ 50 = 4 个
沿 250mm:能放 250 ÷ 40 = 6 个
沿 240mm:能放 240 ÷ 30 = 8 个
总数:4 × 6 × 8 = 192
对所有排列取最大值
计算:
我们枚举所有6种摆放方式:
摆放方式(长 × 宽 × 高)沿长方向能放沿宽方向能放沿高方向能放总盒数30 × 40 × 5066414430 × 50 × 4065618040 × 30 × 5058416040 × 50 × 3055820050 × 30 × 4048619250 × 40 × 30468✅192
最终答案:
✅ 最多可以放 200 个小盒子
这个最大值出现在摆放方式为 40 × 50 × 30(单位:mm) 的时候。
小蓝的大箱子尺寸为200mm×250mm×240mm,小盒子的尺寸允许旋转,因此需考虑其所有可能的排列组合。对于每种排列,计算各维度可容纳的小盒子数量并相乘,比较后得到最大值。
步骤解析:
-
列举所有小盒子的排列方式: 共6种(30,40,50)、(30,50,40)、(40,30,50)、(40,50,30)、(50,30,40)、(50,40,30)。
-
计算每种排列的容纳数量:
- 排列(40,50,30):
- 沿大箱长200mm → 200 ÷ 40 = 5
- 沿大箱宽250mm → 250 ÷ 50 = 5
- 沿大箱高240mm → 240 ÷ 30 = 8
- 总数量:5 × 5 × 8 = 200
- 排列(40,50,30):
-
其他排列计算结果均小于200,例如:
- 排列(50,40,30)得到4×6×8=192;
- 其余排列结果在144-192之间。
最终答案: 小蓝最多可以放入200个小盒子。
要解决这个问题,我们需要枚举小盒子的所有可能的旋转方式,然后计算每种旋转方式下大箱子中能容纳的小盒子数量,最后取最大值。以下是详细的Python实现:
方法思路
- 枚举所有旋转方式:小盒子的尺寸为30×40×50,可以有6种不同的排列方式(即长、宽、高的不同组合)。
- 计算每种排列下的容纳数量:对于每一种排列方式,分别计算大箱子的三个维度(200、250、240)分别能容纳多少个小盒子的对应维度,然后将这三个数相乘得到总数。
- 取最大值:比较所有排列方式下的总数,找出最大的那个值。
解决代码
from itertools import permutations
def max_boxes():
box_sizes = [30, 40, 50]
large_box = (200, 250, 240)
max_count = 0
# Generate all possible permutations of the box dimensions
for dims in permutations(box_sizes):
a, b, c = dims
count_a = large_box[0] // a
count_b = large_box[1] // b
count_c = large_box[2] // c
total = count_a * count_b * count_c
if total > max_count:
max_count = total
return max_count
print(max_boxes())
代码解释
- 导入库:使用
itertools.permutations
来生成小盒子尺寸的所有排列组合。 - 初始化变量:
box_sizes
存储小盒子的三个维度,large_box
存储大箱子的三个维度,max_count
初始化为0,用于记录最大容纳数量。 - 枚举排列方式:通过
permutations
生成所有可能的排列方式,共有6种。 - 计算每种排列的容纳数量:对于每一种排列方式,分别计算大箱子的每个维度能容纳多少个小盒子的对应维度,然后将这三个数相乘得到总数。
- 更新最大值:比较当前排列的总数与已知的最大值,更新
max_count
。 - 返回结果:最终返回
max_count
,即最多可以放入的小盒子数量。
运行该程序后,输出结果为200,这与题目中的分析一致,说明在排列方式为40×50×30时,大箱子可以容纳最多的小盒子。