一阶差分序列garch建模_时间序列分析

本文详细介绍了时间序列分析中的各种概念,包括趋势变动、季节变动、循环波动和随机变动。重点讲解了随机过程、白噪声序列、平稳性序列以及单位根非平稳序列。此外,文章还深入探讨了ARIMA模型、ETS模型族和GARCH模型,用于时间序列预测和条件异方差建模。时间序列预测涉及的模型包括一阶差分、移动平均、指数平滑等方法。最后,文章讨论了模型选择、评估及应用,强调了波动率模型在金融数据中的重要性。
摘要由CSDN通过智能技术生成

时间序列的变动

一个时间序列往往是以下几类变化形式的叠加和耦合。

  • 趋势变动:在长时期内按某种规则稳定地呈现出来的持续向上或向下或保持在某一水平。
  • 季节变动:在一个年度内重复出现的周期性波动。它是诸如气候条件、生产条件、节假日或人们的风俗习惯等各种因素影响的结果。
  • 循环波动:是时间序列呈现出得非固定长度的周期性变动。循环波动的周期可能会持续一段时间,但与趋势不同,它不是朝着单一方向的持续变动,而是涨落相同的交替波动。
  • 不规则波动(随机变动):是许多不可控的偶然因素共同作用的结果,致使时间序列产生一种波浪形或震荡式的变动。

随机时序分析的基本概念

  • 随机过程

现象的变化没有确定的形式,没有必然的变化规律。随机过程是随机变量的集合。 若一随机系统的样本点是随机函数,则称此函数为样本函数,这一随机系统全部样本函数的集合是一个随机过程。

在研究随机过程时人们透过表面的偶然性描述出必然的内在规律并以概率的形式来描述这些规律,从偶然中悟出必然正是这一学科的魅力所在。

随机变量:简单的随机现象,如某班一天学生出勤人数,是静态的。

随机过程:随机现象的动态变化过程。动态的。如某一时期各个时刻的状态。

所谓过程就是事物的发展变化过程,尽管过程的形式各异,但归纳起来不外乎两种:一种是确定性的,一种是随机性的。

所谓确定性过程,就是指事物的发展有必然的变化规律,用数学语言来说,就是事物变化的过程可以用一个(或几个)时间t的确定的函数来描述。具有可重复性。

所谓随机过程,就是说现象的变化没有确定形式,没有必然的变化规律。用数学语言来说,就是事物变化的过程不能用一个(或几个)时间t的确定的函数来描述。不可重复性。也就是说,如果对事物变化的全过程进行一次观测得到一次观察结果是一个时间t的函数,但对同一事物的变化过程独立地重复进行多次观测所得的结果是不相同的。 如果对于每一特定的t属于T(T是时间集合),X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t属于T}是一个随机过程。

  • 白噪声序列

随机变量X(t)(t=1,2,3……),如果是由一个不相关的随机变量的序列构成的,即对于所有s≠k,随机变量Xs和Xk的协方差为零,则称其为纯随机过程

如果一个纯随机过程的期望和方差均为常数,则称之为白噪声过程。白噪声过程的样本实称成为白噪声序列,简称白噪声。

——白噪声序列是一个有限均值、有限方差的独立同分布随机变量序列(随机过程)。之所以称为白噪声,是因为他和白光的特性类似,白光的光谱在各个频率上有相同的强度,白噪声的谱密度在各个频率上的值相同。

如果白噪声具体是服从均值为0、方差为常数的正态分布,那就是高斯白噪声序列。

  • 平稳性序列

平稳性可以说是时间序列分析的基础。平稳的通俗理解就是时间序列的一些行为不随时间改变, 所谓平稳过程就是其统计特性不随时间的平移而变化的过程。

——即时间序列内含的规律和逻辑,要在被预测的未来时间段内能够延续下去。这样我们才能用历史信息去预测未来信息,类似机器学习中的训练集和测试集同分布。

——如果时间序列的变化是没有规律的、完全随机的,那么预测模型也就没有用。

——平稳性的数学表达:如果时间序列在某一常数附近波动且波动范围有限,即有常数均值和常数方差,并且延迟k期的序列变量的自协方差和自相关系数是相等的或者说延迟k期的序列变量之间的影响程度是一样的,则称该序列为平稳序列。简单说就是没有明显趋势且波动范围有限。

严平稳/强平稳

通俗来说,就是时间序列的联合分布随着时间变化严格保持不变。

数学表达:如果对所有的时刻 t, (yt1,yt2,…ytm)的联合分布与(y(t1+k),(yt2+k),…y(tm+k))的联合分布相同,我们称时间序列 {yt} 是严平稳的。也就是时间序列的联合分布在时间的平移变换下保持不变。

弱平稳

数学表达:均值不变,协方差Cov(yt,y(t-k))=γk,γk依赖于k。

——即协方差也不随时间改变,而仅与时间差k相关。

可以根据根据时间序列的折线图等大致观察数据的(弱)平稳性:所有数据点在一个常数水平上下以相同幅度波动

弱平稳的线性时间序列具有短期相关性(证明见参考书),即通常只有近期的序列值对现时值得影响比较明显,间隔越远的过去值对现时值得影响越小。至于这个间隔,也就是下面要提到的模型的阶数。

严平稳和弱平稳的关系

严平稳是一个很强的条件,难以用经验的方法验证,所以一般将弱平稳性作为模型的假设条件。

两者并不是严格的包含与被包含关系,但当时间序列是正态分布时,二者等价。

  • 单位根非平稳序列(可转换为平稳序列的非平稳序列)

在金融数据中,通常假定资产收益率序列是弱平稳的。但还有一些研究对象,比如利率、汇率、资产的价格序列,往往不是平稳的。对于资产的价格序列,其非平稳性往往由于价格没有固定的水平,这样的非平稳序列叫做单位根(unit-root)非平稳序列。

(1)最著名的单位根非平稳序列的例子是随机游走(random walk)模型:

pt=μ+p(t-1)+εt

μ是常数项(漂移:drift)。εt是白噪声序列,则pt就是一个随机游走。它的形式和AR模型很像,但不同之处在于,AR模型中,系数的模需要小于1,这是AR的平稳性条件,而随机游走相当于系数为1的AR公式,不满足AR模型的平稳性条件。

随机游走模型可作为(对数)股价运动的统计模型,在这样的模型下,股价是不可预测的。因为εt关于常数对称,所以在已知p(t-1)的条件下,pt上升或下降的概率都是50%,无从预测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值