线性代数-MIT-第4讲

线性代数-MIT-第4讲

更多文章请关注微信公众号:SLAM之路

目录

线性代数-MIT-第4讲

1.矩阵AB的逆

2.消元矩阵的乘积

3.转置与置换


1.矩阵AB的逆

          \large (AB)^{-1}=B^{-1}A^{-1}

          \large (A^{-1})^{T}=(A^{T})^{-1}\Rightarrow AA^{-1}=I\rightarrow (AA^{-1}) ^{T}=(A^{-1})^{T}A^{T}=I

2.消元矩阵的乘积

最基础的矩阵分解A=LU:

          \large A=LU ,{no\, \, \, row \, \, \, exchange}

A通过消元矩阵得到上三角阵U,L联系这A和U;

      E21          A        =       U                  A=LU

\large \begin{bmatrix} 1 &0 \\ -4& 1 \end{bmatrix}\begin{bmatrix} 2 &1 \\ 8& 7 \end{bmatrix}=\begin{bmatrix} 2 &1 \\ 0& 3 \end{bmatrix}\Rightarrow\begin{bmatrix} 2 &1 \\ 8& 7 \end{bmatrix}=\begin{bmatrix} 1 &0\\ 4&1 \end{bmatrix}\begin{bmatrix} 2 &1 \\ 0& 3 \end{bmatrix}

\large L=(E_{21})^{-1}

左乘初等矩阵,将矩阵转化为上三角阵U;

L是下三角阵,对角线为1,U是上三角阵,对角线为主元;

 

举例A为3x3,则消元成为上三角阵U(假设没有行交换):

\large E_{32}E_{31}E_{21}A=U\rightarrow \Rightarrow A=((E_{21})^{-1}(E_{31})^{-1}(E_{32})^{-1})U=LU

此处为何转化成右侧的逆?

解释(以3x3举例):

\large E_{32}E_{21}=E(E32为单位阵,E是A的左乘,(3,3)位置是10,不友好)

\large \begin{bmatrix} 1 &0 &0 \\ 0& 1 & 0\\ 0 & -5 &1 \end{bmatrix}\begin{bmatrix} 1 &0 &0 \\ -2& 1 & 0\\ 0 & 0 &1 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ -2& 1 & 0\\ \boldsymbol{​{\color{Red} }{\color{Red} 10}} & -5 &1 \end{bmatrix}

\large (E_{21})^{-1}(E_{32})^{-1}=L(E32为单位阵,L是U的左乘,L是E的逆,(3,3)位置0,更友好)

\large \begin{bmatrix} 1 &0 &0 \\ 2& 1 & 0\\ 0 & 0 &1 \end{bmatrix}\begin{bmatrix} 1 &0 &0 \\ 0& 1 & 0\\ 0 & 5 &1 \end{bmatrix}=\begin{bmatrix} 1 &0 &0 \\ 2& 1 & 0\\ \boldsymbol{​{\color{Red} }{\color{Red} 0}} & 5 &1 \end{bmatrix}

因此,A=LU,如果没有行交换,则消元乘数可以直接写入L中;

 

消元的过程,需要多少次操作?例如nxn的矩阵A:

例如,100x100的矩阵;

第一步,第一行不变,使除第一行外第一列变为0,该过程除第一行其余均变化,

              即是100x99,近似于100x100;

第二部,第一二行不变,使除第一二行外第二列变0,该过程除第一二行和和第一列变化,

              即是99x98,近似于99x99

因此总的次数为,100x100+99x99+98x98...2x2+1x1,根据微积分可得

                 \large \int_{0}^{100}n^{2}dn=\frac{1}{3}n^{3}

而右侧向量b,则需要1+2+3+...+n-1+n-2=\large (1+n-1)(n-1)/2\approx n^{2}次;

3.转置与置换

下面讨论主元位置存在0的情况,即需要进行行交换(置换矩阵)

置换矩阵可以进行行交换;

例如3x3的矩阵,存在3!=6个置换矩阵,对nxn的矩阵,存在n!个矩阵

23行交换         不变                12行交换        13行交换          312行                231行

\large \begin{bmatrix} 1 &0 &0 \\ 0& 0 & 1\\ 0 & 1 &0 \end{bmatrix},\begin{bmatrix} 1 &0 &0 \\ 0& 1 & 0\\ 0 &0 &1 \end{bmatrix},\begin{bmatrix} 0 &1 &0 \\ 1& 0 & 0\\ 0 &0 &1 \end{bmatrix},\begin{bmatrix} 0 &0 &1 \\ 0& 1 & 0\\ 1&0 &0 \end{bmatrix},\begin{bmatrix} 0 &0 &1 \\ 1& 0 & 0\\ 0 &1 &0 \end{bmatrix},\begin{bmatrix} 0 &1 &0 \\ 0& 0 & 1\\ 1 &0 &0 \end{bmatrix}

该6个矩阵形成群,互乘仍然在这六个矩阵中,它的逆也是在六个矩阵中

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值