erp与相关计算机技术,基于ERP的商务智能系统应用-计算机技术专业论文.docx

本文探讨了ERP系统与商务智能(BI)技术的整合应用,旨在提升企业数据处理能力及决策效率。通过分析ERP核心模块及业务流程,设计了基于ERP的BI系统结构模型,并完成了数据仓库的概念及逻辑模型设计,实施了OLAP分析及神经网络预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于ERP的商务智能系统应用-计算机技术专业论文

扬州大学

硕士学位论文

基于ERP的商务智能系统应用研究

姓名:詹少强

申请学位级别:硕士

专业:计算机技术

指导教师:包振强摘

摘要

伴随着信息技术的发展,各个企业都面临庞大的数据,提高信息利用率,快 速准确地找出所需要的信息,做出高明的决策,就显得尤为迫切。而利用商务智 能的数据仓库、OLAP和数据挖掘等技术从ERP数据源提取有用的数据,并对数 据进行分析运算,最终将运算结果转变为信息来指导企业行动,就可以最小化企 业用于决策的时间,最大化企业对资源的利用率。从而有效地整合了企业的业务 流程,达到监控业务活动,支持决策的目的。

将商务智能以ERP为基础的进行应用,可以使孤立、分散的企业数据按高

效、易于提取的结构进行存储,让用户可以按不同的透视方法进行快速分析,是 解决信息孤岛问题的良好方案。

本文首先通过分析ERP和商务智能的相关理论与实现技术,分析了基于ERP 的商务智能应用的总体结构、功能模块和技术体系。

最终,本文以讵航软件的ERP管理模式为依托,以乐山三水食品加工厂韵业 务模式为背景,以库存管理模块作为分析主题对象,来实现基于ERP的商务智 能应用。

结合该食品加工企业的业务模式,本文在设计中完成了下列工作: (1)分析了ERP的核心模块和业务流程,并详细阐述ERP系统中库存分析

主题。

(2)设计了基于ERP的商务智能应用系统的结构模型,并详细描述了各模 块功能。

(3)在研究数据仓库的总体结构和库存分析主题特点的基础上,设计了结 合该食品加工厂的数据仓库概念模型与逻辑模型,并完成数据的ETL过程。

(4)根据该制造企业基于库存分析主题的数据集市中的一个主题域——存 货异动主题的特点,设计了相关数据的分析维度和粒度,通过OLAP技术中的上 卷和下钻操作时间维产生各年度、各季度和各个月的汇总数据情况,完成了 OLAP分析。

(5)结合该企业,在生成对企业物料成本进行分析和预测的神经网络算法 的训练样本后,通过不断训练并生成样本验证数据,分析相对误差并将其控制在 允许范【嚣l内,从而真币实现此算法对企业物料成本未来数据的预测。

关键词:商务智能:时间序列:OLAP;El冲;数据仓库;神经网络

IIABSTRACT

II

ABSTRACT

With the development of information technology,all businesses are faced with huge data,improve information util ization,quickly and accurately identify the information needed to make wise decisions.it is particularly urgent.The use of business intelligence data warehousing,OLAP and data mining technology from the ERP data source to extract the useful data,and data analysis operations,and ultimately the results of operations for the information to guide companies into action.we can minimize the enterprises for decision.making time,maximize the utilization of enterprise resources.Order tO effectively integrate enterprise business processes,to monitor the operational activities in support of the decision—making purposes.

Based on ERP.business intelligence applications can make isolated,dispersed enterprise data by emcient.easy.to extract the structure of memorY,SO that the user

can press a different perspective method for rapid analysis iS to solve the problem of information silos good program.

In this paper,by analyzing the ERP and

掌握SPSS的命令语法对于批量处理数据和执行高级分析至关重要,而结合Python接口则可以进一步自动化和定制化分析过程。在始之,建议你先熟悉《IBM SPSS Statistics命令语法指南》这份资源,它将为你提供详细和全面的语法指令和操作方法。首先,了解SPSS命令语法的基本结构,它通常包括命令名、子命令(如FILE HANDLE)、关键参数(如/FILE=)和特定的关键字(如BY)。例如,一个基本的读取数据文件的语法可能如下所示:\n```\nGET FILE='D:\data.sav'.\n```\n在这个例子中,`GET FILE`是命令,`'D:\data.sav'`是参数,指出数据文件的路径。要进行批量处理,你可以通过循环结构来执行多个命令。同时,利用SPSS的Python接口,你可以通过Python脚本自动化整个分析过程。SPSS Statistics提供了Python模块spss,它允许你在Python环境中控制SPSS命令。通过编写Python代码,你可以读取数据、执行分析、导出结果等。例如,启动SPSS并读取数据文件的Python代码如下:\n```\nimport spss\nspss.StartClient()\nspss.FromPortableDialogs()\nspss.SendNote('读取数据文件')\nspss.Submit('GET FILE=\u2018D:\\data.sav\u2019.')\n```\n在这段Python代码中,`spss.StartClient()`启动SPSS的Python接口,`spss.FromPortableDialogs()`用于配置对话框,而`spss.Submit()`则提交SPSS命令。通过这种方式,你可以将重复的数据处理分析工作自动化,提高效率并减少错误。要深入学习如何通过Python接口调用SPSS命令,以及如何将SPSS与Python的其他库如pandas和matplotlib结合使用,你应该继续探索《IBM SPSS Statistics命令语法指南》。这份指南不仅详细介绍了SPSS的命令语法,还提供了Python和Java接口的使用示例和技巧,是帮助你成为SPSS自动化分析专家的宝贵资源。 参考资源链接:[IBM SPSS Statistics命令语法指南](https://wenku.csdn.net/doc/42e9b5vsqp?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值