paper 168: 2018-FATTEN 论文解析-feature space transfer for data augmentation

paper download:https://arxiv.org/abs/1801.04356

本文的核心就是使用GAN网络生成新的数据。

 

 

 这个总体框图,常规结构,具体是通过在appearance和pose上分离在网络设计上,作者提到了三点:

1.  为了避免网络只是单纯的Match Feature Pairs,如上图所示,只是学习Residual:,公式的意思是Source与Target 的Feature Vector的差值。

2.  Appearance和pose分开训练,pose的学习便可以全监督训练学习。

3.  Appearance和pose分开训练,能够使对这两个属性的学习上更加Balance

 

转载于:https://www.cnblogs.com/molakejin/p/9310692.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值