1. 求泛函的极大值和极小值问题称为变分问题,求泛函极值的方法称为变分法。
2. 泛函的定义
1) 如果对于一个函数
x(t)
,有一个J值与之对应,则变量J称为依赖于函数
x(t)
的泛函数,即泛函,记作
J=J[x(t)]
泛函为标量,其值由函数的选取而定。
3. 泛函的变分
若连续泛函
J[x(t)]
的增量可以表示为
ΔJ=J[x(t)+δx(t)]−J[x(t)]=L[x(t),δx(t)]+r[x(t),δx(t)]
,
其中
L[x(t),δx(t)]
是泛函增量的线性主部,它是
δx(t)
的线性连续泛函,称为泛函的变分(微分),记为
δJ=L[x(t),δx(t)]
4. 泛函的极值
可微泛函
J[x(t)]
在
x0(t)
上达到极大(小)值,则在
x=x0(t)
上有
δJ=0
,即变分为0.
5. Jensen不等式(Jensen’s inequality):
f(∑i=1Mλixi)≤∑i=1Mλif(xi)
,其中,对于任意点集
{xi}
,都有
λi≥0
且
∑iλi=1
,凸函数(convex function)满足Jensen不等式。
对于连续变量,Jensen不等式的形式为:
f(∫xp(x)dx)≤∫f(x)p(x)dx
.
下一阶段准备进行利用变分法求极值问题。