泛函与变分

1. 求泛函的极大值和极小值问题称为变分问题,求泛函极值的方法称为变分法。

2. 泛函的定义
1) 如果对于一个函数 x(t) ,有一个J值与之对应,则变量J称为依赖于函数 x(t) 的泛函数,即泛函,记作
J=J[x(t)]
泛函为标量,其值由函数的选取而定。

3. 泛函的变分
若连续泛函 J[x(t)] 的增量可以表示为
ΔJ=J[x(t)+δx(t)]J[x(t)]=L[x(t),δx(t)]+r[x(t),δx(t)]
其中 L[x(t),δx(t)] 是泛函增量的线性主部,它是 δx(t) 线性连续泛函,称为泛函的变分(微分),记为
δJ=L[x(t),δx(t)]

4. 泛函的极值
可微泛函 J[x(t)] x0(t) 上达到极大(小)值,则在 x=x0(t) 上有 δJ=0 ,即变分为0.

5. Jensen不等式(Jensen’s inequality):
f(i=1Mλixi)i=1Mλif(xi) ,其中,对于任意点集 {xi} ,都有 λi0 iλi=1 ,凸函数(convex function)满足Jensen不等式。
对于连续变量,Jensen不等式的形式为:
f(xp(x)dx)f(x)p(x)dx .

下一阶段准备进行利用变分法求极值问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值