1、2D平面上的直线
2D平面上一条直线,可以用 ax1 + bx2 + c = 0 描述,将参数和变量分别提取乘参数,可以用向量 l 和 x 描述。
以后可以直接说这条直线就是 l , l 决定了这条直线,求直线等同于求 l 。如果一个点属于这条直线,那么直线的方程可以用向量的相乘等于0表示。
2、2D平面上的直线交点
两条直线的交点,可以用两个直线的叉乘表示,叉乘的结果为交点坐标。
证明:
因此,x 为交点。
3、2D平面上的无穷远点
二维空间中的一个点,可以用3*1维向量表示,齐次坐标中x3 != 0。无穷远点则是齐次坐标最后一维 x3 = 0。(写成欧式坐标,u=x1/x2, v=x2/x3,则x3=0就是无穷远点)
齐次坐标形式,就可以表达无穷远点,也可以参与计算。这里我们关注两条平行直线交点,结论:平行线的交点在无穷远点,坐标为直线的方向,第三维为0:
其中,向量叉乘计算如下:
证明:
因此同理可证明该点也位于直线 l` 上。即 [a, b, c] 与 [b, -a, 0]T垂直(T为转置),[a, b] 表示直线的法向量,垂直方向为 [ b, -a]。简单来说一条直线的无穷远点即这条直线的方向,最后一位加 0 就是他们的交点。
4、2D平面上的无穷远直线
无穷远点集位于称为无穷远线的一条直线上。
证明:
无穷远线可以认为是平面上线的“方向”的集合。PS:两组平行线确定无穷远线。
5、3D空间中的面
定义3D空间中一平面,齐次坐标表达式如下:
一个点属于这个平面,也可以表示成如下形式:
6、3D空间中的直线
3D空间中直线具有4个自由度,难以在空间中表示。可以定义为两平面的交线,只关注直线的方向:
7、3D空间中的无穷远点
空间中平行线的交点,三维空间中的无穷远点,一定是第四维为0(这里的 a,b,c 就是直线的方向),依据2D空间定义,可定义为:
8、3D空间中的无穷远平面
1)每一个平面对应着一条无穷远线;
2)平行平面在无穷远处交于一条公共线,即无穷远直线(即平行平面的无穷远线是同一根);
3)两条或多条无穷远直线的集合定义为无穷远平面。