留数的概念可以推广到无穷远点的情形.
定义 6.2
设 ∞ \infty ∞ 为函数 f ( z ) f(z) f(z) 的一个孤立奇点, 即 f ( z ) f(z) f(z) 在去心邻域 N \ { ∞ } : 0 ⩽ r N \backslash\{\infty\}: 0 \leqslant r N\{ ∞}:0⩽r < ∣ z ∣ < + ∞ <|z|<+\infty <∣z∣<+∞ 内解析, 则称
1 2 π i ∫ Γ − f ( z ) d z ( Γ : ∣ z ∣ = ρ > r ) \frac{1}{2 \pi \mathrm{i}} \int_{\Gamma^{-}} f(z) \mathrm{d} z \quad(\Gamma:|z|=\rho>r) 2πi1∫Γ−f(z)dz(Γ:∣z∣=ρ>r)
为 f ( z ) f(z) f(z) 在点 ∞ \infty ∞ 的留数, 记为 Res f ( z ) \operatorname{Res} f(z) Resf(z), 这里 Γ − \Gamma^{-} Γ−是指顺时针方向(这个方向很自然地可以看作是绕无穷远点的正方向).
设 f ( z ) f(z) f(z) 在 0 ⩽ r < ∣ z ∣ < + ∞ 0 \leqslant r<|z|<+\infty 0⩽r<∣z∣<+∞ 内的洛朗展式为
f ( z ) = ⋯ + c − n z n + ⋯ + c − 1 z + c 0 + c 1 z + ⋯ + c n z n + ⋯ , f(z)=\cdots+\frac{c_{-n}}{z^{n}}+\cdots+\frac{c_{-1}}{z}+c_{0}+c_{1} z+\cdots+c_{n} z^{n}+\cdots, f(z)=⋯+znc−n+⋯+zc−1+c0+c1z+⋯+cnzn+⋯,
由逐项积分定理及第三章例 3.2 , 即知
Res z = ∞ f ( z ) = 1 2 π i ∫ Γ − f ( z ) d z = − c − 1 , ( 6.6 ) \underset{z=\infty}{\operatorname{Res}} f(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma^{-}} f(z) \mathrm{d} z=-c_{-1}, \quad\quad(6.6) z=∞Resf(z)=2πi1∫Γ−f(z)dz=−c−1,(6.6)
也就是说, Res z = ∞ f ( z ) \operatorname{Res}_{z=\infty} f(z) Resz=∞f(z) 等于 f ( z ) f(z) f(z) 在点 ∞ \infty ∞的洛朗展式中 1 z \frac{1}{z} z1 这一项的系数反号.
定理 6.6
如果函数 f ( z ) f(z) f(z) 在扩充 z z z平面上只有有限个孤立奇点(包括无穷远点在内), 设为 a 1 , a 2