复变函数论6-留数理论及其应用1-4:函数在无穷远点的留数【设∞为函数f(z)的一个孤立奇点,即f(z)在去心邻域N\{∞}内解析,则称2πi∑Resf(z)为f(z)在点∞的留数】

本文介绍了复变函数中留数理论在无穷远点的应用。定义了函数在无穷远点的留数,并通过洛朗展开和留数定理,展示了如何计算函数在无穷远点的留数。给出了一个计算积分的例子,说明利用留数理论可以简化复杂积分问题的求解。同时,提出了思考题,引导读者探索计算周线积分的不同方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

留数的概念可以推广到无穷远点的情形.

定义 6.2

∞ \infty 为函数 f ( z ) f(z) f(z) 的一个孤立奇点, 即 f ( z ) f(z) f(z) 在去心邻域 N \ { ∞ } : 0 ⩽ r N \backslash\{\infty\}: 0 \leqslant r N\{ }:0r < ∣ z ∣ < + ∞ <|z|<+\infty <z<+ 内解析, 则称

1 2 π i ∫ Γ − f ( z ) d z ( Γ : ∣ z ∣ = ρ > r ) \frac{1}{2 \pi \mathrm{i}} \int_{\Gamma^{-}} f(z) \mathrm{d} z \quad(\Gamma:|z|=\rho>r) 2πi1Γf(z)dz(Γ:z=ρ>r)

f ( z ) f(z) f(z) 在点 ∞ \infty 的留数, 记为 Res ⁡ f ( z ) \operatorname{Res} f(z) Resf(z), 这里 Γ − \Gamma^{-} Γ是指顺时针方向(这个方向很自然地可以看作是绕无穷远点的正方向).

f ( z ) f(z) f(z) 0 ⩽ r < ∣ z ∣ < + ∞ 0 \leqslant r<|z|<+\infty 0r<z<+ 内的洛朗展式为

f ( z ) = ⋯ + c − n z n + ⋯ + c − 1 z + c 0 + c 1 z + ⋯ + c n z n + ⋯   , f(z)=\cdots+\frac{c_{-n}}{z^{n}}+\cdots+\frac{c_{-1}}{z}+c_{0}+c_{1} z+\cdots+c_{n} z^{n}+\cdots, f(z)=+zncn++zc1+c0+c1z++cnzn+,

由逐项积分定理及第三章例 3.2 , 即知

Res ⁡ z = ∞ f ( z ) = 1 2 π i ∫ Γ − f ( z ) d z = − c − 1 , ( 6.6 ) \underset{z=\infty}{\operatorname{Res}} f(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma^{-}} f(z) \mathrm{d} z=-c_{-1}, \quad\quad(6.6) z=Resf(z)=2πi1Γf(z)dz=c1,(6.6)

也就是说, Res ⁡ z = ∞ f ( z ) \operatorname{Res}_{z=\infty} f(z) Resz=f(z) 等于 f ( z ) f(z) f(z) 在点 ∞ \infty 的洛朗展式中 1 z \frac{1}{z} z1 这一项的系数反号.

定理 6.6

如果函数 f ( z ) f(z) f(z) 在扩充 z z z平面上只有有限个孤立奇点(包括无穷远点在内), 设为 a 1 , a 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值