对偶四元数的应用

对偶四元数的定义

对偶四元数的一般形式为: q ^ = r + ε s \hat{q}=r+\varepsilon s q^=r+εs,其中 r = r 0 + i r 1 + j r 2 + k r 3 r=r_0+ir_1+jr_2+kr_3 r=r0+ir1+jr2+kr3 s = s 0 + i s 1 + j s 2 + k s 3 s=s_0+is_1+js_2+ks_3 s=s0+is1+js2+ks3均为四元数, ε \varepsilon ε为对偶运算符,满足 ε ≠ 0 , ε 2 = 0 \varepsilon \neq 0,\varepsilon^2=0 ε=0,ε2=0

对偶四元数与旋转矩阵 R R R,平移向量 t t t的关系为:
[ 1 0 T 0 R ] = W T ( r ) Q ( r ) \begin{bmatrix}1&0^T\\0&R\end{bmatrix}=W^T(r)Q(r) [100TR]=WT(r)Q(r)
1 2 [ t 0 ] = W T ( r ) s \frac{1}{2}\begin{bmatrix}t\\0 \end{bmatrix}=W^T(r)s 21[t0]=WT(r)s
上式中, Q ( r ) = [ r 0 − r 123 T r 123 r 0 I 3 × 3 + K ( r 123 ) ] Q(r)=\begin{bmatrix}r_0&-r_{123}^T\\r_{123}&r_0I_{3\times3}+K(r_{123})\end{bmatrix} Q(r)=[r0r123r123Tr0I3×3+K(r123)] W ( r ) = [ r 0 − r 123 T r 123 r 0 I 3 × 3 − K ( r 123 ) ] W(r)=\begin{bmatrix}r_0&-r_{123}^T\\r_{123}&r_0I_{3\times3}-K(r_{123})\end{bmatrix} W(r)=[r0r123r123Tr0I3×3K(r123)] r 123 = [ r 1 , r 2 , r 3 ] T r_{123}=[r_1,r_2,r_3]^T r123=[r1,r2,r3]T K ( r 123 ) = [ 0 − r 3 r 2 r 3 0 − r 1 − r 2 r 1 0 ] K(r_{123})=\begin{bmatrix}0&-r_3&r_2\\r_3&0&-r_1\\-r_2&r_1&0\end{bmatrix} K(r123)=0r3r2r30r1r2r10
整理得:
R = [ r 0 2 + r 1 2 − r 2 2 − r 3 2 2 ( r 1 r 2 − r 0 r 3 ) 2 ( q 1 q 3 + q 0 q 2 ) 2 ( r 1 r 2 + r 0 r 3 ) r 0 2 − r 1 2 + r 2 2 − r 3 2 2 ( r 2 r 3 − r 0 r 1 ) 2 ( r 1 r 3 − r 0 r 2 ) 2 ( r 2 r 3 + r 0 r 1 ) r 0 2 − r 1 2 − r 2 2 + r 3 2 ] R=\begin{bmatrix}r_0^2+r_1^2-r_2^2-r_3^2&2(r_1r_2-r_0r_3)&2(q_1q_3+q_0q_2)\\ 2(r_1r_2+r_0r_3)&r_0^2-r_1^2+r_2^2-r_3^2&2(r_2r_3-r_0r_1)\\2(r_1r_3-r_0r_2)&2(r_2r_3+r_0r_1)&r_0^2-r_1^2-r_2^2+r_3^2\end{bmatrix} R=r02+r12r22r322(r1r2+r0r3)2(r1r3r0r2)2(r1r2r0r3)r02r12+r22r322(r2r3+r0r1)2(q1q3+q0q2)2(r2r3r0r1)r02r12r22+r32
t = [ 2 ( r 0 s 1 − r 1 s 0 + r 2 s 3 − r 3 s 2 ) 2 ( r 0 s 2 − r 1 s 3 − r 2 s 0 + r 3 s 1 ) 2 ( r 0 s 3 − r 1 s 2 − r 2 s 1 − r 3 s 0 ) ] t=\begin{bmatrix}2(r_0s_1-r_1s_0+r_2s_3-r_3s_2)\\2(r_0s_2-r_1s_3-r_2s_0+r_3s_1)\\2(r_0s_3-r_1s_2-r_2s_1-r_3s_0)\end{bmatrix} t=2(r0s1r1s0+r2s3r3s2)2(r0s2r1s3r2s0+r3s1)2(r0s3r1s2r2s1r3s0)

对偶四元数应用在位姿恢复中的例子:

在这里插入图片描述
标定模型定义如下:
P M T = R M S P S T + P M S P_{MT}=R_{MS}P_{ST}+P_{MS} PMT=RMSPST+PMS
目标函数为:
f ( R M S , P M S ) = 1 N ∑ k = 1 N ∥ P M T − R M S P S T − P M S ∥ 2 f(R_{MS},P_{MS})=\frac{1}{N}\sum_{k=1}^N \|P_{MT}-R_{MS}P_{ST}-P_{MS}\|^2 f(RMS,PMS)=N1k=1NPMTRMSPSTPMS2
转换到对偶四元数表示:
f ( r , s ) = 1 N ( r T D 1 r + s T D 2 r + N s T s + D 3 ) f(r,s)=\frac{1}{N}(r^TD_1r+s^TD_2r+Ns^Ts+D_3) f(r,s)=N1(rTD1r+sTD2r+NsTs+D3)
其中: D 1 = − 2 ∑ k = 1 N [ Q T ( P M T ′ ) W ( P S T ′ ) ] D_1=-2\sum_{k=1}^N[Q^T(P'_{MT})W(P'_{ST})] D1=2k=1N[QT(PMT)W(PST)]
D 2 = 2 ∑ k = 1 N [ W ( P S T ′ ) − Q T ( P M T ′ ) ] D_2=2\sum_{k=1}^N[W(P'_{ST})-Q^T(P'_{MT})] D2=2k=1N[W(PST)QT(PMT)]
D 3 = ∑ k = 1 N ( P S T ′ T P S T ′ + P M T ′ T P M T ′ ) = c o n s t D_3=\sum_{k=1}^N ({P'_{ST}}^T P'_{ST}+{P'_{MT}}^TP'_{MT})=const D3=k=1N(PSTTPST+PMTTPMT)=const
P M T ′ P'_{MT} PMT P S T ′ P'_{ST} PST P M T P_{MT} PMT P S T P_{ST} PST对应的纯虚数。

利用拉格朗日乘数法,构造辅助函数:
f ( r , s , λ 1 , λ 2 ) = 1 N [ r T D 1 r + s T D 2 r + N s T s + D 3 + λ 1 ( r T r − 1 ) + λ 2 ( r T s ) f(r,s,\lambda_1,\lambda_2)=\frac{1}{N}[r^TD_1r+s^TD_2r+Ns^Ts+D_3+\lambda_1(r^Tr-1)+\lambda_2(r^Ts) f(r,s,λ1,λ2)=N1[rTD1r+sTD2r+NsTs+D3+λ1(rTr1)+λ2(rTs)
r r r s s s求偏导后整理得:
A r = λ 1 r Ar=\lambda_1r Ar=λ1r
其中 A = 1 2 [ 1 2 N D 2 T D 2 − ( D 1 + D 1 T ) ] A=\frac{1}{2}[\frac{1}{2N}D_2^TD_2-(D_1+D_1^T)] A=21[2N1D2TD2(D1+D1T)]
而目标函数可以转化为 f ( r , s ) = 1 N ( D 3 − λ 1 ) f(r,s)=\frac{1}{N}(D_3-\lambda_1) f(r,s)=N1(D3λ1)
所以, r r r A A A得最大特征值对应的特征向量。
得到 r , s r,s r,s后,即可推出 R , t R,t R,t

参考源:http://html.rhhz.net/buptjournal/html/20170102.htm
http://www.jgg09.com/CN/article/downloadArticleFile.do?attachType=PDF&id=11153

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值