基于注意力机制的图卷积网络预测药物-疾病关联

BIB | 基于注意力机制的图卷积网络预测药物-疾病关联

智能生信

智能生信

人工智能×生物医药

​关注

科学求真

赢 10 万奖金 · 院士面对面

9 人赞同了该文章

今天给大家介绍华中农业大学章文教授团队在Briefings in Bioinformatics上发表的文章“Predicting drug–disease associations through layer attention graph convolutional network”。确定药物与疾病的关联是药物开发过程中不可或缺的一部分,而发展高效、高精度的计算方法对预测药物与疾病的相关性具有重要意义。本文提出了一种名为LAGCN的新方法,该方法使用引入了注意力机制的图卷积网络用以预测药物-疾病关联。

一、研究背景

药物开发是一个极其昂贵和漫长的过程,一种药物平均要花费26亿美元,历经12年的时间才能研发成功。识别药物与疾病的关联可以有效地挑选出候选关联并进行进一步验证,因此可以加速药物开发。深度学习方法已被证明在许多任务中更有效,包括但不限于人脸识别、问答系统、计算生物学,并且在药物-疾病关联预测中也有成功的应用。最近,图卷积网络展示了它在生物医学领域的强大能力,如microRNA(miRNA)-疾病关联预测和miRNA-耐药关联预测。本文中作者提出了一种端到端的深度学习方法,称为LAGCN,用于预测药物与疾病的关联。LAGCN首先将已知的药物-疾病关联、药物-药物相似性和疾病-疾病相似性整合到一个异构网络中,并将图卷积运算应用到网络中,学习药物和疾病的嵌入。其次,LAGCN使用注意力机制将来自多个图卷积层的嵌入进行组合。最后,基于整合的嵌入对未知的药物与疾病的相关性进行评分。

二、模型与方法

2.1数据集

作者从Comparative Toxicogenomics Database(CTD)中获取到269种药物、598种疾病,以及18416个前述药物与疾病的关联。药物的相关信息(Target、Enzyme等)从DrugBank database中获取&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值