3.11 随机初始化-深度学习-Stanford吴恩达教授


←上一篇↓↑下一篇→
3.10 直观理解反向传播回到目录3.12 总结习题

随机初始化 (Radom Initialization)

当你训练神经网络时,权重随机初始化是很重要的。对于逻辑回归,把权重初始化为0当然也是可以的。但是对于一个神经网络,如果你把权重或者参数都初始化为0,那么梯度下降将不会起作用。

让我们看看这是为什么。有两个输入特征, n [ 0 ] = 2 n^{[0]}=2 n[0]=2 ,2个隐藏层单元 n [ 1 ] n^{[1]} n[1] 就等于2。 因此与一个隐藏层相关的矩阵,或者 W [ 1 ] W^{[1]} W[1] 说是22的矩阵,假设把它初始化为0的22矩阵, b [ 1 ] b^{[1]} b[1] 也等于 [ 0 , 0 ] T [0,0]^T [0,0]T ,把偏置项 b b b 初始化为0是合理的,但是把 w w w 初始化为0就有问题了。 那这个问题如果按照这样初始化的话,你总是会发现 a 1 [ 1 ] a^{[1]}_1 a1[1] a 2 [ 1 ] a^{[1]}_2 a2[1] 相等,这个激活单元和这个激活单元就会一样。因为两个隐含单元计算同样的函数,当你做反向传播计算时,这会导致 d z 1 [ 1 ] dz^{[1]}_1 dz1[1] d z 2 [ 1 ] dz^{[1]}_2 dz2[1] 也会一样,对称这些隐含单元会初始化得一样,这样输出的权值也会一模一样,由此 W [ 2 ] W^{[2]} W[2] 等于 [ 0 , 0 ] [0,0] [0,0]

在这里插入图片描述
图3.11.1 但是如果你这样初始化这个神经网络,那么这两个隐含单元就会完全一样,因此他们完全对称,也就意味着计算同样的函数,并且肯定的是最终经过每次训练的迭代,这两个隐含单元仍然是同一个函数,令人困惑。 d W dW dW 会是一个这样的矩阵,每一行有同样的值因此我们做权重更新把权重 W [ 1 ] ⇒ W [ 1 ] − a d W W^{[1]}\Rightarrow W^{[1]}-adW W[1]W[1]adW 每次迭代后的 W [ 1 ] W^{[1]} W[1] ,第一行等于第二行。

由此可以推导,如果你把权重都初始化为0,那么由于隐含单元开始计算同一个函数,所有的隐含单元就会对输出单元有同样的影响。一次迭代后同样的表达式结果仍然是相同的,即隐含单元仍是对称的。通过推导,两次、三次、无论多少次迭代,不管你训练网络多长时间,隐含单元仍然计算的是同样的函数。因此这种情况下超过1个隐含单元也没什么意义,因为他们计算同样的东西。当然更大的网络,比如你有3个特征,还有相当多的隐含单元。

如果你要初始化成0,由于所有的隐含单元都是对称的,无论你运行梯度下降多久,他们一直计算同样的函数。这没有任何帮助,因为你想要两个不同的隐含单元计算不同的函数,这个问题的解决方法就是随机初始化参数。你应该这么做:把 W [ 1 ] W^{[1]} W[1] 设为np.random.randn(2,2)(生成高斯分布),通常再乘上一个小的数,比如0.01,这样把它初始化为很小的随机数。然后 b b b 没有这个对称的问题(叫做symmetry breaking problem),所以可以把 b b b 初始化为0,因为只要随机初始化 W W W 你就有不同的隐含单元计算不同的东西,因此不会有symmetry breaking问题了。相似的,对于 W [ 2 ] W^{[2]} W[2] 你可以随机初始化, b [ 2 ] b^{[2]} b[2] 可以初始化为0。

W [ 1 ] = n p . r a n d o m . r a n d n ( 2 , 2 ) ∗ 0.01 , b [ 1 ] = n p . z e r o s ( ( 2 , 1 ) ) W^{[1]}=np.random.randn(2,2)*0.01,b^{[1]}=np.zeros((2,1)) W[1]=np.random.randn(2,2)0.01,b[1]=np.zeros((2,1)) W [ 2 ] = n p . r a n d o m . r a n d n ( 2 , 2 ) ∗ 0.01 , b [ 2 ] = 0 W^{[2]}=np.random.randn(2,2)*0.01,b^{[2]}=0 W[2]=np.random.randn(2,2)0.01,b[2]=0

你也许会疑惑,这个常数从哪里来,为什么是0.01,而不是100或者1000。我们通常倾向于初始化为很小的随机数。因为如果你用tanh或者sigmoid激活函数,或者说只在输出层有一个Sigmoid,如果(数值)波动太大,当你计算激活值时 z [ 1 ] = W [ 1 ] x + b [ 1 ] , a [ 1 ] = σ ( z [ 1 ] ) = g [ 1 ] ( z [ 1 ] ) z^{[1]}=W^{[1]}x+b^{[1]},a^{[1]}=\sigma(z^{[1]})=g^{[1]}(z^{[1]}) z[1]=W[1]x+b[1],a[1]=σ(z[1])=g[1](z[1]) 如果 W W W 很大, z z z 就会很大或者很小,因此这种情况下你很可能停在tanh/sigmoid函数的平坦的地方(见图3.8.2),这些地方梯度很小也就意味着梯度下降会很慢,因此学习也就很慢。

回顾一下:如果 w w w 很大,那么你很可能最终停在(甚至在训练刚刚开始的时候) z z z 很大的值,这会造成tanh/Sigmoid激活函数饱和在龟速的学习上,如果你没有sigmoid/tanh激活函数在你整个的神经网络里,就不成问题。但如果你做二分类并且你的输出单元是Sigmoid函数,那么你不会想让初始参数太大,因此这就是为什么乘上0.01或者其他一些小数是合理的尝试。对于 w [ 2 ] w^{[2]} w[2] 一样,就是np.random.randn((1,2)),我猜会是乘以0.01。

事实上有时有比0.01更好的常数,当你训练一个只有一层隐藏层的网络时(这是相对浅的神经网络,没有太多的隐藏层),设为0.01可能也可以。但当你训练一个非常非常深的神经网络,你可能要试试0.01以外的常数。下一节课我们会讨论怎么并且何时去选择一个不同于0.01的常数,但是无论如何它通常都会是个相对小的数。

好了,这就是这周的视频。你现在已经知道如何建立一个一层的神经网络了,初始化参数,用前向传播预测,还有计算导数,结合反向传播用在梯度下降中。

课程PPT

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


←上一篇↓↑下一篇→
3.10 直观理解反向传播回到目录3.12 总结习题

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值