【控制】Z变换及其原理讲解

扩展链接:
【控制】拉普拉斯拉氏变换原理分解理解
【Matlab 控制】 拉氏变换和Z变换

简介

如果用拉氏变换来分析采样系统,则系统的输出必然是 s s s 的超越函数,求其拉氏反变换是一件麻烦的事。经过科学家们的努力,寻找了一种 Z 变换法,在这种变换下,使原来的 s s s 超越方程变成了一个以 z z z 为算子的代数方程,这一方法的引入使采样系统的分析在理论上有了大的发展。

Z 变换与拉氏变化有类似之处。拉氏变换的每一种运算规则都有一个相应的 Z 变换应用。

Z变换(Z-transformation)是对离散序列进行的一种数学变换,常用于求线性时不变差分方程的解。 它在离散系统中的地位如同拉普拉斯变换在连续系统中的地位。

Z变换已成为分析线性时不变离散系统问题的重要工具,并且在数字信号处理、计算机控制系统等领域有着广泛的应用。

Z变换(Z-transformation)可将时域信号(即离散时间序列)变换为在复频域的表达式。它在离散时间信号处理中的地位,如同拉普拉斯变换在连续时间信号处理中的地位。

离散时间信号的Z变换是分析线性时不变离散时间系统问题的重要工具,把线性移(时)不变离散系统的时域数学模型——差分方程转换为Z域的代数方程,使离散系统的分析同样得以简化,还可以利用系统函数来分析系统的时域特性、频率响应及稳定性等。

Z变换具有许多重要的特性:如线性、时移性、微分性、序列卷积特性和复卷积定理等等。这些性质在解决信号处理问题时都具有重要的作用。其中最具有典型意义的是卷积特性。由于信号处理的任务是将输入信号序列经过某个(或一系列各种)系统的处理后输出所需要的信号序列,因此,首要的问题是如何由输入信号和所使用的系统的特性求得输出信号。通过理论分析可知,若直接在时域中求解,则由于输出信号序列等于输入信号序列与所用系统的单位抽样响应序列的卷积和,故为求输出信号,必须进行繁琐的求卷积和的运算。而利用Z变换的卷积特性则可将这一过程大大简化。只要先分别求出输入信号序列及系统的单位抽样响应序列的Z变换,然后再求出二者乘积的反变换即可得到输出信号序列。这里的反变换即逆Z变换,是由信号序列的Z变换反回去求原信号序列的变换方式。

定义


Z = e T s Z = e^{Ts} Z=eTs


s = 1 T ln ⁡ z s=\frac{1}{T}\ln z s=T1lnz

s s s—laplace算子,
Z Z Z— 是用复数 Z 平面定义的一个复变量,
T T T—采样周期。

F ∗ ( s ) = ∑ n = 0 ∞ f ( n T ) Z − n = F ( Z ) F^*(s) = \sum_{n=0}^\infty f(nT)Z^{-n} = F(Z) F(s)=n=0f(nT)Zn=F(Z)

说明

(1)Z 变换是对连续函数采样后的采样函数的拉代变换,只在采样点上的信号起作用。
F ( Z ) = Z [ f ∗ ( t ) ] F(Z) = Z[f^*(t)] F(Z)=Z[f(t)]

有时简写为
F ( Z ) = Z [ f ( t ) ] F(Z)=Z[f(t)] F(Z)=Z[f(t)]

(2)不同连续信号可能对应相同的 Z 变换。由于 Z 变换是对连续信号的采样信号进行变换,不同的连续信号,只要它们的采样信号相同,Z 变换就相同。

(3) F ( z ) = ∑ n = 0 ∞ f ( n T ) z − n = f ( 0 ) + f ( T ) z − 1 + f ( 2 T ) z − 2 + ⋯ F(z) = \sum_{n=0}^\infty f(nT) z^{-n} = f(0) + f(T) z^{-1} + f(2T) z^{-2} + \cdots F(z)=n=0f(nT)zn=f(0)+f(T)z1+f(2T)z2+

是一个对时间离散的函数,可以写成幂函数, f ( n T ) f(nT) f(nT) 表示幅值,表示时间,因此, F ( Z ) F(Z) F(Z) 包含采样的量值和时间两个信息。

Z 变换求解方法

1)级数求和法

例,求单位阶跃函数 1 ( t ) 1(t) 1(t) 的 Z 变换。
解: Z [ 1 ∗ ( t ) ] = Z [ 1 ( t ) ] = ∑ n = 0 ∞ 1 ( n T ) Z − n = 1 + Z − 1 + Z − 2 + ⋯ + Z − n + ⋯ = lim ⁡ n → ∞ 1 − Z − n 1 − Z − 1 = 1 1 − Z − 1 { q = Z − 1 S n = a 1 ( 1 − q ) n 1 − q } \begin{aligned}Z[1*(t)] &= Z[1(t)] \\ &= \sum_{n=0}^\infty 1(nT) Z^{-n} \\ &= 1 + Z^{-1} + Z^{-2} + \cdots + Z^{-n} + \cdots \\ &= \lim_{n\rightarrow\infty} \frac{1-Z^{-n}}{1-Z^{-1}} \\ &= \frac{1}{1-Z^{-1}} \left\{\begin{matrix} q =Z^{-1} \\ S_n = \frac{a_1(1-q)^n}{1-q} \end{matrix}\right\} \end{aligned} Z[1(t)]=Z[1(t)]=n=01(nT)Zn=1+Z1+Z2++Zn+=nlim1Z11Zn=1Z11{q=Z1Sn=1qa1(1q)n}

2)部分分式法

先求出系统连续部分的函数进行展开 F ( s ) = ∑ i = 1 n = A i s + p i F(s) = \sum_{i=1}^n = \frac{A_i}{s+p_i} F(s)=i=1n=s+piAi形式,
再逐项进行 Z 变换。

例,求 F ( s ) = a s ( s + a ) = s − 1 − ( s + a ) − 1 F(s) = \frac{a}{s(s+a)} = s^{-1} - (s+a)^{-1} F(s)=s(s+a)a=s1(s+a)1
解:原函数 f ( t ) = 1 ( t ) − e − a t f(t) = 1(t) - e^{-at} f(t)=1(t)eat

F ( z ) = Z [ 1 ( t ) ] − Z [ e − a t ] = z z − 1 − z z − e − a t = z ( 1 − e − a t ) ( z − 1 ) ( z − e − a t ) \begin{aligned}F(z) &= Z[1(t)] - Z[e^{-at}] \\ &= \frac{z}{z-1} - \frac{z}{z-e^{-at}} \\ &= \frac{z(1-e^{-at})}{(z-1)(z-e^{-at})}\end{aligned} F(z)=Z[1(t)]Z[eat]=z1zzeatz=(z1)(zeat)z(1eat)

基本定理

1)线性定理

Z [ a ⋅ x ( t ) ] = a ⋅ X ( z ) Z[a \cdot x(t)] = a \cdot X(z) Z[ax(t)]=aX(z) Z [ x 1 ( t ) ± x 2 ( t ) ] = X 1 ( z ) ± X 2 ( z ) Z[x_1(t) \pm x_2(t)] = X_1(z) \pm X_2(z) Z[x1(t)±x2(t)]=X1(z)±X2(z)

2)实数位移定理

迟后定理

设在 t < 0 t<0 t<0 时,连续函数 x ( t ) x(t) x(t) 为零,其 Z 变换存在,则
Z [ x ( t − k T 0 ) ] = Z − k X ( z ) Z[x(t-kT_0)] = Z^{-k} X(z) Z[x(tkT0)]=ZkX(z)

说明:
(1)迟后定理说明,原函数在时域中延迟 k k k 个采样周期,相当于 Z 变换乘以 Z − k Z^{-k} Zk
(2)算子 Z − k Z^{-k} Zk 的物理意义: Z − k Z^{-k} Zk 代表迟后环节,他把采样信号延迟 k k k 个采样周期。

超前定理

Z [ x ( t + n T ) ] = z n [ X ( z ) − ∑ k = 0 n − 1 x ( k T ) z − k ] Z[x(t+nT)] = z^n [X(z) - \sum_{k=0}^{n-1} x(kT) z^{-k}] Z[x(t+nT)]=zn[X(z)k=0n1x(kT)zk]

Proof:
n = 1 n=1 n=1 时,
Z [ x ( t + T ) ] = z 1 [ X ( z ) − ∑ k = 0 0 x ( k T ) z − k ] = z 1 [ X ( z ) − x ( 0 ) z − 0 ] = z 1 X ( z ) − z 1 x ( 0 ) \begin{aligned} Z[x(t+T)] &= z^1 [X(z) - \sum_{k=0}^{0} x(kT) z^{-k}] \\ &= z^1 [X(z) - x(0) z^{-0}] \\ &= z^1 X(z) - z^1 x(0) \end{aligned} Z[x(t+T)]=z1[X(z)k=00x(kT)zk]=z1[X(z)x(0)z0]=z1X(z)z1x(0)

n = 2 n=2 n=2 时,
Z [ x ( t + 2 T ) ] = z 2 [ X ( z ) − ∑ k = 0 1 x ( k T ) z − k ] = z 2 [ X ( z ) − x ( 0 ) z − 0 − x ( T ) z − 1 ] = z 2 X ( z ) − z 2 x ( 0 ) − z 1 x ( T ) \begin{aligned} Z[x(t+2T)] &= z^2 [X(z) - \sum_{k=0}^{1} x(kT) z^{-k}] \\ &= z^2 [X(z) - x(0) z^{-0} - x(T)z^{-1}] \\ &= z^2 X(z) - z^2 x(0) - z^1 x(T) \end{aligned} Z[x(t+2T)]=z2[X(z)k=01x(kT)zk]=z2[X(z)x(0)z0x(T)z1]=z2X(z)z2x(0)z1x(T)

3)复数位移定理

Z [ e ± a t f ( t ) ] = F ( Z e ± a T ) Z[e^{\pm a t} f(t)] = F(Z e^{\pm a T}) Z[e±atf(t)]=F(Ze±aT)

复数位移定理是仿照拉氏变换的复数位移定理导出的,其含义时函数 e ∗ ( t ) e^*(t) e(t) 乘以指数序列的 Z 变换,就等于在 e ∗ ( t ) e^*(t) e(t) 的 Z 变换表达 F [ z ] F[z] F[z] 中用 Z e ± a T Ze^{\pm aT} Ze±aT 取代原算子 Z。

4)终值定理

设连续时间函数 x ( t ) x(t) x(t) 的 Z 变换为 X ( z ) X(z) X(z),且 ( z − 1 ) X ( z ) (z-1)X(z) (z1)X(z) 在平面上以原点为圆心的单位圆上和圆外无极点,则有
lim ⁡ t → ∞ x ( t ) = lim ⁡ z → 1 [ ( z − 1 ) x ( z ) ] \lim_{t\rightarrow\infty} x(t) = \lim_{z\rightarrow1} [(z-1) x(z)] tlimx(t)=z1lim[(z1)x(z)]

5)初值定理

设函数 x ( t ) x(t) x(t) 的 Z 变换为 X ( z ) X(z) X(z),并且 lim ⁡ z → ∞ X ( z ) \lim_{z\rightarrow\infty}X(z) limzX(z) 存在,则
x ( 0 ) = lim ⁡ z → ∞ X ( z ) x(0) = \lim_{z\rightarrow\infty} X(z) x(0)=zlimX(z)

与傅里叶变换的关系

因为 Z = e j ω Z = e^{j\omega} Z=ejω,按 Z 变换的定义, X ( z ) X(z) X(z) 可写成
X ( r e j ω ) = X ( Z ) ∣ z = r e j ω = ∑ n = − ∞ + ∞ [ x ( n ) r − n ] e − j ω n X(re^{j\omega}) = X(Z)|_{z=re^{j\omega}} = \sum_{n=-\infty}^{+\infty} [x(n)r^{-n}]e^{-j\omega n} X(rejω)=X(Z)z=rejω=n=+[x(n)rn]ejωn

上式的 Z 变换可以看作为序列 X ( n ) X(n) X(n) 乘以指数序列 r − n r^{-n} rn 后的傅里叶变换。

Ref: Z变换-豆丁网

Ref: Z变换-百度百科

Z 变换表

Number F ( s ) F(s) F(s) f ( t ) ( t ≥ 0 ) f(t) (t\ge0) f(t)(t0) E ( z ) E(z) E(z)
*1 1 1 1 δ ( t ) \delta(t) δ(t) 1 1 1
*2 1 s \frac{1}{s} s1 1 ( t ) 1(t) 1(t) z z − 1 \frac{z}{z-1} z1z
*3 1 s 2 \frac{1}{s^2} s21 t t t T z ( z − 1 ) 2 \frac{Tz}{(z-1)^2} (z1)2Tz
*4 2 ! s 3 \frac{2!}{s^3} s32! t 2 t^2 t2$$
5 3 ! s 4 \frac{3!}{s^4} s43! t 3 t^3 t3$$
*6 m ! s m + 1 \frac{m!}{s^{m+1}} sm+1m! t m t^m tm$$
*7 1 s + a \frac{1}{s+a} s+a1 e − a t e^{-at} eat$$
8 1 ( s + a ) 2 \frac{1}{{(s+a)}^2} (s+a)21 t ⋅ e − a t t\cdot e^{-at} teat$$
9 1 ( s + a ) 3 \frac{1}{{(s+a)}^3} (s+a)31 1 2 ! t 2 ⋅ e − a t \frac{1}{2!}t^2\cdot e^{-at} 2!1t2eat$$
10 1 ( s + a ) m \frac{1}{{(s+a)}^m} (s+a)m1 1 ( m − 1 ) ! t m − 1 ⋅ e − a t \frac{1}{(m-1)!}t^{m-1}\cdot e^{-at} (m1)!1tm1eat$$
11$$$$
*17 a ( s 2 + a 2 ) \frac{a}{(s^2+a^2)} (s2+a2)a sin ⁡ ( a t ) \sin(at) sin(at)
*18 s ( s 2 + a 2 ) \frac{s}{(s^2+a^2)} (s2+a2)s cos ⁡ ( a t ) \cos(at) cos(at)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值