近年来,深度学习在时间序列建模领域取得了显著进展。许多最先进的模型,例如 S4、S5 和 LRU,都利用了将状态空间模型 (SSM) 与神经网络相结合的序列块。这些模型在处理长序列数据时表现出色,但其背后的理论基础尚未完全揭示。
本文将探讨深度 SSM 架构的泛化能力,并重点关注稳定性在其中的作用。我们证明了稳定性约束可以有效地提高模型的泛化能力,并提供了一个与序列长度无关的泛化界。
稳定性:深度 SSM 架构的关键
深度 SSM 架构通常包含多个 SSM 块,这些块通过非线性变换(例如多层感知器 (MLP) 或门控线性单元 (GLU) 网络)连接在一起。为了确保模型的稳定性,人们通常会在 SSM 块中引入稳定性约束。例如,LRU 模型使用线性 SSM,并对系数矩阵进行指数参数化以确保系统的稳定性。
那么,稳定性在深度 SSM 架构的成功中扮演着什么角色呢?
本文通过对模型泛化行为的严格分析,揭示了稳定性对深度 SSM 架构泛化能力的影响。我们发现,稳定性可以有效地降低模型的 Rademacher 复杂度,从而得到一个与序列长度无关的泛化界。
Rademacher 复杂度:衡量模型复杂度
Rademacher 复杂度是衡量模型复杂度的一种重要指标。它反映了模型在随机噪声扰动下对训练数据的拟合能力。一般来说,Rademacher 复杂度越低,模型的泛化能力越强。
我们证明了深度 SSM 架构的 Rademacher 复杂度可以被其 SSM 块的最大系统范数所上界。系统范数是控制理论中用来衡量动态系统稳定性的一个重要指标。我们的结果表明,通过引入稳定性约束,可以有效地降低 SSM 块的系统范数,从而降低模型的 Rademacher 复杂度,进而提高模型的泛化能力。
泛化界:理论保障
基于 Rademacher 复杂度,我们推导出一个与序列长度无关的泛化界。该界表明,深度 SSM 架构的泛化误差与模型的稳定性程度成反比。也就是说,SSM 块越稳定,模型的泛化能力越强。
我们的结果为使用稳定 SSM 块提供了理论依据。它表明,稳定性不仅是深度 SSM 架构的实际需求,也是理解这些架构本质的关键因素。
总结
本文深入探讨了深度 SSM 架构的泛化能力,并证明了稳定性在其中的重要作用。我们发现&#