Transformers and State Space Models: A New Era of Efficient Deep Learning


As a seasoned AI expert and professor with 20 years of experience, I am thrilled to dive into the latest breakthroughs in deep learning. In this article, we will explore the fascinating connections between Transformers and State Space Models (SSMs), and how they are revolutionizing the field of artificial intelligence.

The Rise of Transformers

Transformers have been the cornerstone of deep learning’s success in language modeling. However, they have some limitations, such as scaling quadratically with sequence length during training and requiring a cache of size linear in sequence length during autoregressive generation. To address these issues, researchers have turned to State Space Models (SSMs), which have emerged as a promising alternative.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值