As a seasoned AI expert and professor with 20 years of experience, I am thrilled to dive into the latest breakthroughs in deep learning. In this article, we will explore the fascinating connections between Transformers and State Space Models (SSMs), and how they are revolutionizing the field of artificial intelligence.
The Rise of Transformers
Transformers have been the cornerstone of deep learning’s success in language modeling. However, they have some limitations, such as scaling quadratically with sequence length during training and requiring a cache of size linear in sequence length during autoregressive generation. To address these issues, researchers have turned to State Space Models (SSMs), which have emerged as a promising alternative.