思考的艺术:ReaRAG如何教会大模型更聪明地“查资料”

“当你不知道答案时,最聪明的做法不是瞎猜,而是去查。”——某位理智的AI


🧠 引子:大模型的“聪明”烦恼

大型语言模型(LLMs)已经足够聪明,可以写诗、解题、甚至模仿莎士比亚的语气。但它们也有一个不太聪明的毛病:有时候会一本正经地胡说八道。尤其是在面对需要多步推理(multi-hop reasoning)的问题时,它们往往靠“记忆”作答,而不是“查资料”,这就容易出错。

于是,研究者们提出了“检索增强生成”(Retrieval-Augmented Generation,简称RAG)的方法,让模型在回答前先去“翻资料”。听起来不错,但问题也随之而来:查得太多,容易“过度思考”;查得太少,又容易“想当然”。更糟糕的是,一旦第一步查错了,后面就全错了——这就是所谓的“错误传播”。

为了解决这些问题,清华大学和西门子联合团队提出了一个新方法:ReaRAG(Reasoning-enhanced RAG)。它不仅会查资料,还会在每一步都反思自己是否走错了路,就像一个认真备考的学生,不断修正自己的解题思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值