捷联惯导系统学习2.4(4元数基本概念)

定义数Q为:
Q = q 0 + q 1 ∗ i + q 2 ∗ j + q 3 ∗ k Q=q_0+q_1*i+q_2*j+q_3*k Q=q0+q1i+q2j+q3k
i,j,k具有如下关系:
(1) i ∗ i = j ∗ j = k ∗ k = i j k = − 1 i*i=j*j=k*k=ijk=-1 ii=jj=kk=ijk=1(哈密顿公式)
(2) i ∗ j = k ; j ∗ k = i ; k i = j i*j=k;j*k=i;ki=j ij=k;jk=i;ki=j
(3) j ∗ i = − k ; k ∗ j = − i ; i ∗ k = − j j*i=-k;k*j=-i;i*k=-j ji=k;kj=i;ik=j
关系:
P,Q为两个四元数
P = q 0 + q v = q 0 + q 1 ∗ i + q 2 ∗ j + q 3 ∗ k P=q_0+q_v=q_0+q_1*i+q_2*j+q_3*k P=q0+qv=q0+q1i+q2j+q3k ;
Q = p 0 + p v = p 0 + p 1 ∗ i + p 2 ∗ j + p 3 ∗ k Q=p_0+p_v=p_0+p_1*i+p_2*j+p_3*k Q=p0+pv=p0+p1i+p2j+p3k
(1) 四元数乘法不符合交换律,即: Q ∗ P ≠ P ∗ Q Q*P \neq P*Q QP=PQ(但在 v q × u p = u p × v q 下 相 等 v_q\times u_p=u_p\times v_q下相等 vq×up=up×vq)
(2) 符合乘法结合律,即: ( Q + P ) R = Q ∗ R + P ∗ R (Q+P)R=Q*R+P*R (Q+P)R=QR+PR
(3) 共轭转置:
Q ∗ = p 0 − p v = q 0 − q 1 i − q 2 j − q 3 k Q^*=p_0-p_v=q_0-q_1i-q_2j-q_3k Q=p0pv=q0q1iq2jq3k
( P + Q ) ∗ = P ∗ + Q ∗ (P+Q)^*=P^*+Q^* (P+Q)=P+Q
( P Q ) ∗ = Q ∗ P ∗ (PQ)^*=Q^*P^* (PQ)=QP
(4) 第一反对称矩阵(不带下标时默认时第一对称矩阵)
( p v × ) 1 = [ 0 − p 1 − p 2 − p 3 p 1 0 − p 3 p 2 p 2 p 3 0 − p 1 p 3 − p 2 p 1 0 ] = [ 0 − p v T p v p v × ] (p_v\times)_1=\left[ \begin{matrix} 0 & -p_1& -p_2&-p_3 \\ p_1 &0& -p_3&p_2 \\ p_2&p_3& 0&-p_1 \\ p_3&-p_2& p_1& 0\\ \end{matrix} \right]=\left[ \begin{matrix} 0 & -p_v^T \\ p_v &p_v\times \\ \end{matrix} \right] (pv×)1=0p1p2p3p10p3p2p2p30p1p3p2p10=[0pvpvTpv×]
(5) 第二反对称矩阵
( p v × ) 2 = [ 0 − p 1 − p 2 − p 3 p 1 0 p 3 − p 2 p 2 − p 3 0 p 1 p 3 p 2 − p 1 0 ] = [ 0 − p v T p v − p v × ] (p_v\times)_2=\left[ \begin{matrix} 0 & -p_1& -p_2&-p_3 \\ p_1 &0& p_3&-p_2 \\ p_2&-p_3& 0&p_1 \\ p_3&p_2&- p_1& 0\\ \end{matrix} \right]=\left[ \begin{matrix} 0 & -p_v^T \\ p_v &-p_v\times \\ \end{matrix} \right] (pv×)2=0p1p2p3p10p3p2p2p30p1p3p2p10=[0pvpvTpv×]
(6)乘法求解:
P 。 Q = M P Q = ( p 0 + ( p v × ) 1 ) ∗ Q = M Q ′ P = ( q 0 + ( q v × ) 2 ) ∗ P P。Q=M_PQ=(p_0+(p_v\times)_1)*Q=M_Q'P=(q_0+(q_v\times)_2)*P PQ=MPQ=(p0+(pv×)1)Q=MQP=(q0+(qv×)2)P
(7)乘法模值:
∣ ∣ Q ∣ ∣ = q 0 2 + q 1 2 + q 2 2 + q 3 2 ||Q||=\sqrt{q_0^2+q_1^2+q_2^2+q_3^2} Q=q02+q12+q22+q32
∣ ∣ Q ∗ P ∣ ∣ = ∣ ∣ P ∗ Q ∣ ∣ = ∣ ∣ Q ∣ ∣ ∗ ∣ ∣ P ∣ ∣ ||Q*P||=||P*Q||=||Q||*||P|| QP=PQ=QP
(7)逆:
Q − 1 = Q ∗ Q^{-1}=Q^* Q1=Q
(8)三角函数表示
Q = q 0 + q v = c o s θ 2 + u ∗ s i n θ 2 Q=q_0+q_v=cos\frac{θ}{2}+u*sin\frac{θ}{2} Q=q0+qv=cos2θ+usin2θ
(9)四元数与余弦矩阵
C b i = I + s i n θ ∗ ( u × ) + ( 1 − c o s θ ) ( u × ) 2 = C_b^i=I+sinθ*(u\times)+(1-cosθ)(u\times)^2= Cbi=I+sinθ(u×)+(1cosθ)(u×)2=
I + 2 s i n θ 2 ∗ c o s θ 2 ∗ ( u × ) + ( 1 − 2 s i n 2 θ 2 ) ( u × ) 2 = I+2sin\frac{θ}{2}*cos\frac{θ}{2}*(u\times)+(1-2sin^2\frac{θ}{2})(u\times)^2= I+2sin2θcos2θ(u×)+(12sin22θ)(u×)2=
I + 2 q 0 ( q v × ) + 2 ( q × ) 2 = I+2q_0(q_v\times)+2(q\times)^2= I+2q0(qv×)+2(q×)2=
I + 2 q 0 [ 0 − q 3 q 2 q 3 0 − q 1 − q 2 q 1 0 ] + 2 [ 0 − q 3 q 2 q 3 0 − q 1 − q 2 q 1 0 ] 2 = I+2q_0\left[ \begin{matrix} 0 & -q_3&q_2 \\ q_3 &0&-q_1\\ -q_2&q_1&0 \\ \end{matrix} \right]+2\left[ \begin{matrix} 0 & -q_3&q_2 \\ q_3 &0&-q_1\\ -q_2&q_1&0 \\ \end{matrix} \right]^2= I+2q00q3q2q30q1q2q10+20q3q2q30q1q2q102=
[ q 0 2 + q 1 2 − q 2 2 − q 3 2 2 ( q 1 ∗ q 2 − q 0 ∗ q 3 ) 2 ( q 1 ∗ q 3 + q 0 ∗ q 2 ) 2 ( q 1 ∗ q 2 + q 0 ∗ q 3 ) q 0 2 − q 1 2 + q 2 2 − q 3 2 2 ( q 2 ∗ q 3 − q 1 ∗ q 2 ) 2 ( q 1 ∗ q 3 − q 0 ∗ q 2 ) 2 ( q 0 ∗ q 1 + q 2 ∗ q 3 ) q 0 2 − q 1 2 − q 2 2 + q 3 2 ] \left[ \begin{matrix} q_0^2+q_1^2 -q_2^2 -q_3^2 & 2(q_1*q_2-q_0*q_3)&2(q_1*q_3+q_0*q_2) \\ 2(q_1*q_2+q_0*q_3)&q_0^2-q_1^2+q_2^2 -q_3^2&2(q_2*q_3-q_1*q_2)\\ 2(q_1*q_3-q_0*q_2)& 2(q_0*q_1+q_2*q_3)&q_0^2-q_1^2-q_2^2+q_3^2 \\ \end{matrix} \right] q02+q12q22q322(q1q2+q0q3)2(q1q3q0q2)2(q1q2q0q3)q02q12+q22q322(q0q1+q2q3)2(q1q3+q0q2)2(q2q3q1q2)q02q12q22+q32

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值