捷联惯导系统学习6.5(遗忘滤波 )

原理作用

当系统建模存在偏差时,滤波器往往出现过度拟合,不能反映系统真实状态,均方误差阵 P k P_k Pk并不能反映状态估计精度。
解决办法是修改系统噪声 Q k , Q_k, Qk,和量测噪声 R k R_k Rk的权重,从而减少历史信息的权重,相对提高了新信息的权重,减小系统惯性,在建模不准情况下改善滤波性能。

系统状态空间

X k : n 维 状 态 向 量 X_k:n维状态向量 Xk:n
Z k : m 维 测 量 向 量 Z_k:m维测量向量 Zk:m
Φ k / k − 1 : 已 知 的 系 统 结 构 参 数 \Phi_{k/k-1}:已知的系统结构参数 Φk/k1:
Γ k / k − 1 : 已 知 的 系 统 结 构 参 数 , 分 别 为 n × l 阶 系 统 分 配 噪 声 \Gamma_{k/k-1}:已知的系统结构参数,分别为n×l阶系统分配噪声 Γk/k1:n×l
H k : 已 知 的 系 统 结 构 参 数 , 分 别 为 m × n 阶 测 量 矩 阵 H_k:已知的系统结构参数,分别为m×n阶测量矩阵 Hk:m×n
V k : m 维 测 量 噪 声 , 高 斯 白 噪 声 , 服 从 正 太 分 布 V_k:m维测量噪声,高斯白噪声,服从正太分布 Vk:m
W k − 1 : m 维 系 统 噪 声 向 量 , 高 斯 白 噪 声 , 服 从 正 太 分 布 W_{k-1}:m维系统噪声向量,高斯白噪声,服从正太分布 Wk1:m
V k 与 W k − 1 互 不 相 关 V_k与W_{k-1}互不相关 VkWk1
{ X k = Φ k / k − 1 X k − 1 + Γ k / k − 1 W k − 1 Z k = H k X k + V k s t . { E [ W k ] = 0 , E [ W k W j T ] = Q k δ k j Q k ≥ 0 E [ V k ] = 0 , E [ V k V j T ] = R k δ k j , E [ W k V j T ] = 0 R ≥ 0 \begin{cases} X_k=\Phi_{k/k-1}X_{k-1}+\Gamma_{k/k-1}W_{k-1}\\ Z_k=H_kX_k+V_k\\ \end{cases} \\ st. \\ \begin{cases} E[W_k]=0,E[W_kW_j^T]=Q_k\delta_{kj} &Q_k \geq 0\\ E[V_k]=0,E[V_kV_j^T]=R_k\delta_{kj},E[W_kV_j^T]=0&R\geq 0\\ \end{cases} {Xk=Φk/k1Xk1+Γk/k1Wk1Zk=HkXk+Vkst.{E[Wk]=0,E[WkWjT]=QkδkjE[Vk]=0,E[VkVjT]=Rkδkj,E[WkVjT]=0Qk0R0

修改系统噪声 E [ W k W j T ] E[W_kW_j^T] E[WkWjT]和量测噪声 E [ V k V j T ] E[V_kV_j^T] E[VkVjT]

s > 1 : s 为 遗 忘 因 子 , s 越 大 遗 忘 速 度 越 大 s > 1:s为遗忘因子,s越大遗忘速度越大 s>1:s,s
E [ W k W j T ] = s N − k + 1 Q k δ k j E [ V k V j T ] = s N − k R k δ k j ( i , j ≤ N ) E[W_kW_j^T]=s^{N-k+1}Q_k\delta_{kj} \\ E[V_kV_j^T]=s^{N-k}R_k\delta_{kj} (i,j\leq N) E[WkWjT]=sNk+1QkδkjE[VkVjT]=sNkRkδkj(i,jN)

kalman滤波公式(n时刻遗忘滤波模型下的)

n时刻的滤波公式如下:
{ X ^ k / k − 1 N = Φ k / k − 1 X ^ k − 1 N 状 态 预 测 / 时 间 更 新 P k / k − 1 N = Φ k / k − 1 P k − 1 N Φ k / k − 1 T + Γ k − 1 s N − k Q k − 1 Γ k − 1 T 状 态 预 测 均 方 差 阵 / 量 测 更 新 K k N = P k / k − 1 N H k T ( H k P k / k − 1 N H k T + s N − k R k ) − 1 滤 波 增 益 X ^ k N = ( I − K k H k ) X ^ k / k − 1 N + K k N Z k 状 态 估 计 P k N = ( I − K k N H k ) P k / k − 1 N 状 态 估 计 均 方 误 差 阵 \begin{cases} \hat X^N_{k/k-1}=\Phi_{k/k-1}\hat X^N_{k-1}&状态预测/时间更新\\ P^N_{k/k-1}=\Phi_{k/k-1}P^N_{k-1}\Phi^T_{k/k-1}+\Gamma_{k-1}s^{N-k}Q_{k-1}\Gamma_{k-1}^T&状态预测均方差阵/量测更新\\ K_k^N=P_{k/k-1}^NH_k^T(H_kP_{k/k-1}^NH_k^T+s^{N-k}R_k)^{-1}&滤波增益\\ \hat X_k^N=(I-K_kH_k)\hat X^N_{k/k-1}+K_k^NZ_k&状态估计\\ P_k^N=(I-K_k^NH_k)P^N_{k/k-1}&状态估计均方误差阵\\ \end{cases} X^k/k1N=Φk/k1X^k1NPk/k1N=Φk/k1Pk1NΦk/k1T+Γk1sNkQk1Γk1TKkN=Pk/k1NHkT(HkPk/k1NHkT+sNkRk)1X^kN=(IKkHk)X^k/k1N+KkNZkPkN=(IKkNHk)Pk/k1N//
简化:
X ^ k / k − 1 ∗ = Φ k / k − 1 X ^ k − 1 ∗ ; X ^ k ∗ = X ^ k N ; X ^ k / k − 1 ∗ = X ^ k / k − 1 ∗ ; K k ∗ = K k N \hat X^*_{k/k-1}=\Phi_{k/k-1}\hat X_{k-1}^*;\hat X_k^*=\hat X_k^N;\hat X^*_{k/k-1}=\hat X_{k/k-1}^*;K_k^*=K_k^N X^k/k1=Φk/k1X^k1;X^k=X^kN;X^k/k1=X^k/k1;Kk=KkN
{ X ^ k / k − 1 ∗ = Φ k / k − 1 X ^ k − 1 ∗ 状 态 预 测 / 时 间 更 新 P k / k − 1 ∗ = Φ k / k − 1 ( s P k − 1 ∗ ) Φ k / k − 1 T + Γ k − 1 Q k − 1 Γ k − 1 T 状 态 预 测 均 方 差 阵 / 量 测 更 新 K k ∗ = P k / k − 1 ∗ H k T ( H k P k / k − 1 ∗ H k T + R k ) − 1 滤 波 增 益 X ^ k ∗ = ( I − K k H k ) X ^ k / k − 1 ∗ + K k ∗ Z k 状 态 估 计 P k ∗ = ( I − K k ∗ H k ) P k / k − 1 ∗ 状 态 估 计 均 方 误 差 阵 \begin{cases} \hat X^*_{k/k-1}=\Phi_{k/k-1}\hat X^*_{k-1}&状态预测/时间更新\\ P^*_{k/k-1}=\Phi_{k/k-1}(sP^*_{k-1})\Phi^T_{k/k-1}+\Gamma_{k-1}Q_{k-1}\Gamma_{k-1}^T&状态预测均方差阵/量测更新\\ K_k^*=P_{k/k-1}^*H_k^T(H_kP_{k/k-1}^*H_k^T+R_k)^{-1}&滤波增益\\ \hat X_k^*=(I-K_kH_k)\hat X^*_{k/k-1}+K_k^*Z_k&状态估计\\ P_k^*=(I-K_k^*H_k)P^*_{k/k-1}&状态估计均方误差阵\\ \end{cases} X^k/k1=Φk/k1X^k1Pk/k1=Φk/k1(sPk1)Φk/k1T+Γk1Qk1Γk1TKk=Pk/k1HkT(HkPk/k1HkT+Rk)1X^k=(IKkHk)X^k/k1+KkZkPk=(IKkHk)Pk/k1//

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值