完美实现使用evo评估VINS-Mono

    过眼春光久已空,晒丝捣麦又匆匆。——(宋)陆游《夏日》

    EVO工具用于评估SLAM算法在现有数据集上的效果。源码在 https://github.com/MichaelGrupp/evo。目前支持 TUM KITTI Euroc 等格式。evo工具提供了3种误差评估方式:

  • evo_ape -absoulte pose error
  • evo_rpe -relative pose error
  • evo_rpe -for-each -sub-sequence-wise averaged pose error

    4种工具:

  • evo_traj - tool for analyzing, plotting or exporting one or more trajectories
  • evo_res - tool for comparing one or multiple result files from evo_ape or evo_rpe
  • evo_fig - (experimental) tool for re-opening serialized plots (saved with –serialize_plot)
  • evo_config - tool for global settings and config file manipulation

    本文以VINS为例子介绍如何使用evo评估其在Euroc数据集上的效果。数据集网站:

  • 6
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 27
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值