原创内容第759篇,专注量化投资、个人成长与财富自由。
股票智能量化的角度,Qlib是个不错的框架,因此aitrader把qlib也整合进来。
qlib的数据准备,A股的历史所有日线和分钟线,可以通过脚本下载,我已经打包到qlib_extends下:
# download 1d python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn # download 1min python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/qlib_cn_1min --region cn --interval 1min
qlib下载的数据已经是后复权,可以直接用于策略回测。
模型和数据库通过配置文件加载:
from qlib.contrib.model.gbdt import LGBModel from qlib.contrib.data.handler import Alpha158 from qlib.utils import init_instance_by_config, flatten_dict from qlib.workflow import R from qlib.workflow.record_temp import SignalRecord, PortAnaRecord market = "csi300" benchmark = "SH000300" data_handler_config = { "start_time": "2008-01-01", "end_time": "2020-08-01", "fit_start_time": "2008-01-01", "fit_end_time": "2014-12-31", "instruments": market, } task = { "model": { "class": "LGBModel", "module_path": "qlib.contrib.model.gbdt", "kwargs": { "loss": "mse", "colsample_bytree": 0.8879, "learning_rate": 0.0421, "subsample": 0.8789, "lambda_l1": 205.6999, "lambda_l2": 580.9768, "max_depth": 8, "num_leaves": 210, "num_threads": 20, }, }, "dataset": { "class": "DatasetH", "module_path": "qlib.data.dataset", "kwargs": { "handler": { "class": "Alpha158", "module_path": "qlib.contrib.data.handler", "kwargs": data_handler_config, }, "segments": { "train": ("2008-01-01", "2014-12-31"), "valid": ("2015-01-01", "2016-12-31"), "test": ("2017-01-01", "2020-08-01"), }, }, }, } # model initialization model = init_instance_by_config(task["model"]) dataset = init_instance_by_config(task["dataset"]) # start exp with R.start(experiment_name="workflow"): # train R.log_params(**flatten_dict(task)) model.fit(dataset) # prediction recorder = R.get_recorder() sr = SignalRecord(model, dataset, recorder) sr.generate()
使用lightGBM模型,Alpha158因子集:
qlib基本上是开箱即用,而且内置了很多前沿的机器学习,深度学习模型,后续我们来做深度整合。
代码在这个位置:
吾日三省吾身
之前关于“C计划”,有过两种思考。
一种是成功之后,如果不计较得失,你最想做的事情;另一种是关于财富人生。
之前倾向于前一种,这可能有误导性。
这种设想基于你已经财富自由,那当然追求的是意义,内心平静。登上过顶峰,当然可以云淡风清。
但这种状态,没有财富自由的人是想象不出来的。
因此修正为,没有财富之前,C计划目标就一个——————财富自由!在没有财富自由之前,一切的目标应该都是财富自由。
当然这并不意味着你没有生活,无论走什么样的道理,该如何生活还是会如何生活。只是你生活多了努力的方向罢了。
我们来量化一下财富自由标准,个人认为的标准是无负债,可自由投资的净资产5千个W起,一个小目标为佳。设定目标五年为一个阶段,3年太短,7年又太长。尽管之前很多人说“七年就是一辈子”。
人生七年可以从头完成一件大事。
两个五年吧,十年之约——2025-2035年。
我之前定的小目标“五年财务自由退休”,是五年积累500个W可自由投资的净资产,这个也可以定义为高配版本的“财务安全”。后来我感觉,这个版本的“财务安全”,仍然带不来“心理安全”。
1个小目标是什么感觉,你可以自由选择生活的地方,做喜欢的事情。有了目标,那如何做呢?
500个W是可以规划,但5000个W甚至是10000个W就必须做大方向的突破了!
面向未来做规划,目前想到的大趋势一定是AGI,通过AGI的路上,会有财富重塑的机会。
AGI+行业应用。想到的仍然是AGI+金融。金融行业的永续的,AGI是风口+永续的,所以这个方向是有大机会的。
AI量化实验室 星球,已经运行三年多,1200+会员。
aitrader代码,含几十个策略源代码,因子表达式引擎、遗传算法(Deap)因子挖掘引擎等,支持vnpy,qlib,backtrader和bt引擎,名内置多个年化30%+的策略,每周五迭代一次,代码和数据在星球全部开源。
扩展 • 历史文章
EarnMore(赚得更多)基于RL的投资组合管理框架:一致的股票表示,可定制股票池管理。(附论文+代码)
十年年化35%的斜率轮动策略(几行python代码),aitrader_v2.0代码发布
10年17倍:使用卡曼滤波过滤器优化动量和斜率策略(python代码策略下载)
卡曼滤波把策略从年化30%提升到年化53%(python代码)
在长期年化收益32.6%的轮动策略上加择时逻辑,最大回撤略降(python代码)
aitrader v2.1源码发布:沪深300换成红利低波后,十年长期年化提升至34.1%,夏普1.21(python代码)。
aitrader兼容多引擎:vnpy,qlib, backtrader和bt回测实盘一体(附:年化30%策略集python代码)
近四年年化59.1%动量轮动+均线择时策略在aitrader本地实现了。
▼点击阅读原文,访问“AI量化实验室”策略集合
(http://www.ailabx.com/mall)。