关于贝叶斯定理的一些思考

贝叶斯定理

本文会根据病毒测试化验结果的概率计算来思考一下对贝叶斯定理的理解。

问题描述

假设有一天你从某疫区返回,并且经过化验检测结果显示为阳性,则问你真正感染该病毒的概率为多少?

确定变量

以上问题其实是让我们求解一个条件概率:在检测结果为阳性的条件下,感染病毒的概率为多少?
为了求解这个概率,我们需要先定义一些变量:

1.检测结果为阳性:A
2. 检测结果为阴性:!A
3. 感染病毒:B
4. 没有感染病毒:!B

所以以上问题即求条件概率:P(B|A)

条件概率

根据概率论的基本公设假定,条件概率可以表示成:

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

这个等式可以解释为:在检测结果为阳性的条件下感染病毒的概率,等于检测结果为阳性且感染病毒的人占所有检测结果为阳性的人群的比例。
P(AB):感染了病毒且检测结果为阳性的概率。
P(A):所有检测结果为阳性的人群占总人群的概率。

我们可以再看看该条件概率的逆概率P(A|B),即在已知感染病毒的条件下检测结果为阳性的概率,这个场景不好理解,可以尝试建立一个新的平行世界,这个平行世界里的人一旦感染了病毒,该人眼中就会获得一串代码(或者其他方式可获知且只有他自己知道)显示已感染该病毒,再去检测机构(这个世界设定与原来的世界完全一样)检测得到的结果为阳性的概率。

同样,根据概率论的基本公设假定,该条件概率可以表示成:

P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)

其实这个概率是似然概率,或叫似然度:在给定关于这个世界的某个假说时,观察到现有数据的似然度;在本文中的解释为,在给定平行世界里感染病毒时,观察到检测结果阳性的概率。
P(AB):感染了病毒且检测结果为阳性的概率。
P(B):所有感染病毒的人群占总人群的概率。其实这个概率被称为先验概率

此时,可以对第一个条件概率进行转换:

P ( B ∣ A ) = P ( A ∣ B ) P ( B ) P ( A ) P(B|A) = \frac{P(A|B)P(B)}{P(A)} P(BA)=P(A)P(AB)P(B)

这个等式可以解释为:在检测结果为阳性的条件下感染病毒的概率,等于感染病毒的先验概率 * 在感染病毒时检测结果为阳性的概率 / 所有检测结果为阳性的人群占总人群的概率。

边缘概率与可视化

P(A)其实是一个边缘概率,为了理解这个概率,我们首先来看一张图:
在这里插入图片描述

这张图表示所有人群当中感染病毒的人数(黄色,#B),以及没有感染病毒的人数(绿色,#!B)。

再来看以下这张图:
在这里插入图片描述
这张图表示,所有人群当中感染病毒且检测结果为阳性的人数(橙色,#(A|B)),所有人群当中没有感染病毒且检测结果为阳性的人数(蓝色,#(A|!B))

那么,检测结果为阳性的总人数为多少呢?

不难看出,为
在这里插入图片描述
可求得P(A)为

P ( A ) = # ( A ∣ B ) + # ( A ∣ ! B ) # a l l P(A) = \frac{\#(A|B) + \#(A|!B)}{\#all} P(A)=#all#(AB)+#(A!B)


# ( A ∣ B ) = # a l l ∗ P ( B ) ∗ P ( A ∣ B ) \#(A|B) =\#all * P(B) * P(A|B) #(AB)=#allP(B)P(AB)
# ( A ∣ ! B ) = # a l l ∗ P ( ! B ) ∗ P ( A ∣ ! B ) \#(A|!B) =\#all * P(!B) * P(A|!B) #(A!B)=#allP(!B)P(A!B)

所以将以上式子代入P(A),可以把#all消去,得到:
P ( A ) = P ( B ) ∗ P ( A ∣ B ) + P ( ! B ) ∗ P ( A ∣ ! B ) P(A) = P(B) * P(A|B) + P(!B) * P(A|!B) P(A)=P(B)P(AB)+P(!B)P(A!B)

所以条件概率为:

P ( B ∣ A ) = P ( B ) ∗ P ( A ∣ B ) P ( B ) ∗ P ( A ∣ B ) + P ( ! B ) ∗ P ( A ∣ ! B ) P(B|A) = \frac{P(B) * P(A|B)}{P(B) * P(A|B) + P(!B) * P(A|!B)} P(BA)=P(B)P(AB)+P(!B)P(A!B)P(B)P(AB)

以上式子便是贝叶斯公式。可以发现,本文从头到尾未对任何一个概率进行赋值,接下来探讨一下每个概率的意义及其对条件概率的影响。

各个概率的计算

1) P(B)

P(B)是总人群中感染病毒的概率,假设这是一个万分之一的概率,则:

P ( B ) = 0.0001 P(B) = 0.0001 P(B)=0.0001

2) P(A|B)

P(A|B)是感染病毒的人群中检测结果为阳性的概率,假设对于已经感染病毒的人,检测结果百分百正确,则:

P ( A ∣ B ) = 1 P(A|B) = 1 P(AB)=1

3) P(!B)

P(!B)是总人群中没有感染病毒的概率,根据P(B)的定义,有:

P ( ! B ) = 0.9999 P(!B) = 0.9999 P(!B)=0.9999

4) P(A|!B)

P(A|!B)是没有感染病毒的人群中检测结果为阳性的概率,也就是说这是对健康人群检测出错的概率,假设有10%的出错概率:

P ( A ∣ ! B ) = 0.1 P(A|!B) = 0.1 P(A!B)=0.1

5) P(B|A)

那么根据贝叶斯公式,可以求出在检测结果为阳性的条件下,感染病毒的概率为:

P ( B ∣ A ) = 0.0001 ∗ 1 0.0001 ∗ 1 + 0.9999 ∗ 0.1 = 0.001 P(B|A) = \frac{0.0001 * 1}{0.0001 * 1 + 0.9999 * 0.1} = 0.001 P(BA)=0.00011+0.99990.10.00011=0.001

可以看到,即使一个人检测结果为阳性的情况下,真正感染病毒的概率只有千分之一的概率。

各个概率的含义

P(B)是先验概率,比如假设我们已经大概知道总人群的病毒感染率大概是多少。
P(A|B)是似然概率,这是一个需要想象的概率,需要跳出现实的世界,在平行的世界里假如自己已经知道自己感染了病毒,那么检测结果为阳性的可能性有多大。
P(!B)本质上跟先验概率是一样的。
P(A|!B)与P(A|B)一样,需要想象的概率,在平行世界里假如自己确信没有感染病毒,那么检测结果为阴性的可能性有多大?

大家有没有发现,每个概率似乎都并不那么客观,总有一丝主观的成分存在,因为不管先验概率还是似然概率,不可能百分百确定人群中感染病毒的概率到底是多大,检测手段总是有疏漏,现实中又不存在平行世界,所以在确定先验概率和似然概率时总会主观进行修正;但是,又可以用统计等手段让每个概率尽量接近“客观”,从而得到更客观的结果。

接下来我们看看不同概率对后验概率的影响

不同概率的影响

在人类历史中,不同时代遭遇过很多不同的病毒,不同时代的检测技术也不相同,不同病毒的感染率也不同,以下这张图可以揭示其中的关系:

在这里插入图片描述
技术表示某个时代的技术水平( 本文为检测出错率),在相同时代中,感染率的增加会使得后验概率(即检测为阳性条件下感染病毒的概率)增加,这是显然的,可以考虑一个极端情况,当某种病毒的感染率是100%,则无论技术水平如何,检测出来的为阳性的肯定感染了病毒,因为全体人类已经感染病毒了。

而对于某种病毒,在不同时代的后验概率是不同的,随着技术水平的提高(检测出错率下降),后验概率越来越大,表明技术的提高有助于提高检测工具的置信度,随着科技水平的提高,可以越来越相信检测结果。然而,不同感染率的病毒,随着技术水平的提高,后验概率的提高幅度不同,总体来讲,呈现一种随着病毒感染率的增加,技术提高幅度先小,然后迅速变得很大,然后再变小的趋势。也就是说,在感染初期,技术的进步可以有效提高检测工具的置信度,而感染后期,由于大面积感染,检测工具的错与对已经对检测工具的置信度的提高没有太大的影响。

小结

贝叶斯定理看似简单,却蕴含着很深刻的道理,甚至可以上升到哲学层面的思考,在这里仅作较为浅显的解读,希望能与大家多多交流。

参考资料:
[1]: 《贝叶斯的博弈》
[2]: 3blue1brown: https://www.bilibili.com/video/BV1R7411a76r?spm_id_from=333.999.0.0

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值