条件概率

1.条件概率
某个事件在给定其它事件发生时出现的概率被称为条件概率。我们将给定x=xy=y的条件概率记为P(y=yx=x),这个条件概率可以通过下列公式计算:

P(y=yx=x)=P(x=x,y=y)P(x=x)

条件概率只有在P(x=x)>0时有定义。

2.链式法则
任何多维随机向量的联合概率分布,都可以分解为只有一个变量的条件概率相乘的形式:

P(x(1),...,x(n))=P(x(1))i=2nP(x(i)x(1),...,x(i1))

这个规则被称为概率的链式法则乘法法则

3.相互独立和条件独立
两个随机变量xy,如果他们的联合概率分布可以表示成两个因子的乘积形式,并且一个因子只包含x另一个因子只包含y,我们就称这两个随机变量是相互独立的。

xx,yy,p(x=x,y=y)=p(x=x)p(y=y)

如果关于xy的条件概率分布对于z的每一个值都可以写成乘积的形式,那么这两个随机变量xy在给定随机变量z时是条件独立的。
xx,yy,zz,p(x=x,y=yz=z)=p(x=xz=z)p(y=yz=z)

我们可以采用另一种简化方式来表示相互独立性和条件独立性:xy表示xy相互独立,xyz表示xy在给定条件z时条件独立。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页