复刻低成本机械臂 SO-ARM100 3D 打印篇

视频讲解:

复刻低成本机械臂 SO-ARM100 3D 打印篇

清理了下许久不用的3D打印机,挤出机也裂了,更换了喷嘴和挤出机夹具,终于恢复了正常工作的状态,接下来还是要用起来,不然吃灰生锈了,于是乎想起了之前仿真中的SO-ARM100这个机械臂,打算做一套玩玩

https://github.com/TheRobotStudio/SO-ARM100/tree/main#

SO-ARM100 机械臂有 6 个自由度,支持 3D 打印,性价比超高,是 Lerobot 开源机器人解决方案的一部分

git clone后3d打印文件这里我用这两个stl文件,另外几个太大,我这个型号一盘放不下

以前买的天鹰座,现在不知道出多少代了,好像最近比较火的是拓竹,以后再看要不要更新

Part1摆放好后还可以

Part2也刚刚好

然后就开始打印了

### 使用LeRobot框架训练机械 #### 安装依赖项 为了使用LeRobot框架来训练机械,首先需要安装必要的软件包。确保Python环境已经配置好之后,可以通过pip工具安装所需的库: ```bash pip install git+https://gitcode.com/gh_mirrors/le/lerobot ``` 这一步骤会下载并安装LeRobot及其所有必需的依赖项[^1]。 #### 准备硬件与配置文件 在实际开始训练之前,需确认物理设备(如SO-ARM100机械)已被正确连接至计算机,并按照官方文档中的指导设置相应的YAML格式配置文件。此配置文件包含了有关机器人结构的信息以及任何特定参数调整[^3]。 #### 编写训练脚本 编写一个简单的Python脚本来初始化和控制机械是非常重要的。下面是一个基本的例子,展示了如何加载配置、执行校准过程以及定义目标动作序列: ```python from lerobot import RobotController, load_config_from_yaml if __name__ == "__main__": config_path = "path/to/your/robot/config.yaml" robot_controller = RobotController(load_config_from_yaml(config_path)) robot_controller.calibrate() # Define your custom task here as a sequence of actions... target_positions = [(x,y,z), ... ] # Replace with actual coordinates for pos in target_positions: robot_controller.move_to(pos) ``` 这段代码片段说明了怎样通过调用`calibrate()`方法来进行初始的手动校正工作;接着可以指定一系列的目标位置让机械依次前往这些地点。 #### 利用预训练模型加速开发周期 考虑到LeRobot提供了类似于自然语言处理领域内Transformers那样的功能特性,在某些情况下可以直接利用其内置的预训练权重快速构建应用而不需要从头做起。这意味着开发者能够专注于设计具体的任务逻辑而不是底层算法细节上[^4]。 #### 数据收集与强化学习优化 对于更复杂的场景,则可能涉及到大量的实验数据采集用于后续分析或是采用先进的技术比如深度强化学习来进行策略改进。此时应该考虑建立专门的数据记录机制以便后期回放评估性能表现的同时也为进一步迭代提供素材支持[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值