二、永磁同步电机矢量控制(FOC)—不同坐标系下电机数学模型

本文详细介绍了永磁同步电机在不同坐标系下的数学模型,包括自然坐标系ABC、两相静止坐标系aβ和两相旋转坐标系dq,重点讨论了矢量控制方法,以及磁阻、电感与磁饱和、趋肤效应等影响电机性能的关键因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.电机数学模型

       对于永磁同步电机,矢量控制算法是建立在电机的数学模型上,在不同坐标系下,电机数学模型也不同,主要分为自然坐标系ABC下的PMSM数学模型、两相静止坐标系aβ下的PMSM数学模型和两相旋转坐标系dq下的PMSM数学模型

       矢量控制中是进行磁场定向控制,包括转子磁场定向、定子磁场定向和气隙磁场定向。矢量控制基于转子磁场控制,直接转矩控制基于定子磁场定向。

       矢量控制中使用最多的是两相旋转坐标系dq下的PMSM数学模型。

        假设:(1)相绕组、定子电流、转子磁场都对称;(2)转子无阻尼绕组;(3)忽略磁场饱和(磁感应强度和磁场强度呈现线性关系),不计涡流和磁滞损耗(电能均转化为电枢、气隙存储的磁场能量和转子的机械能),气隙磁密波形为正弦波。

2.三相静止坐标系ABC下的PMSM数学模型

(1)电压方程

补充,以上电压、电流、磁链均为瞬时值

(2)磁链方程

L_A为三相定子绕组自感,M_AB为定子绕组自感,若各相绕组匝数相同,自感值等于互感值,φf为转子永磁体励磁磁链,θθe电角度

CSDN博主昔时扬尘处给的公式

### 永磁同步电机矢量控制数学模型 #### 三相静止坐标系下的电机模型 在三相静止坐标系下,永磁同步电机可以表示为一个多变量、非线性的动态系统。为了简化分析过程,在此引入一些基本假设[^1]: - 定子电流和磁场分布呈正弦波形; - 忽略铁心饱和效应以及涡流损耗。 基于上述假设条件,定子电压方程可写作如下形式: \[ u_a=R_s i_a+\frac{d\psi _a}{dt} \] \[ u_b=R_s i_b+\frac{d\psi _b}{dt} \] \[ u_c=R_s i_c+\frac{d\psi _c}{dt} \] 其中 \(u_{a,b,c}\),\(i_{a,b,c}\) 和 \(\psi_{a,b,c}\) 分别代表各相对应的端电压、电枢电流及磁链;而 \(R_s\) 则指代每相绕组电阻。 #### 两相静止坐标系下的电机模型 通过克拉克变换(Clark Transformation), 可以将原始位于ABC轴上的分量转换到αβ平面上的新位置上: \[ \left[\begin{array}{l} \psi_\alpha \\ \psi_\beta \end{array}\right]=T_C\times\left[\begin{array}{l} \psi_a\\ \psi_b\\ \psi_c \end{array}\right], T_C=\sqrt{\frac{2}{3}}\times\left[ \begin{matrix} 1 & -\frac{1}{2}&-\frac{1}{2}\\ 0&\frac{\sqrt{3}}{2}&-\frac{\sqrt{3}}{2} \end{matrix} \right]\tag{1} \] 此时得到新的状态空间表达式为: \[ v_\alpha = R_si_\alpha + p\lambda_\alpha \] \[ v_\beta = R_si_\beta + p\lambda_\beta \] 这里 \(v_{\alpha,\beta}, i_{\alpha, \beta}\) 表达的是经过Clark变化后的直交轴方向上的瞬时值; 而 \(\lambda_{\alpha ,\beta }\) 是相应于这些新坐标的磁通链接向量. #### 旋转坐标系下的电机模型 进一步利用帕克(Park)变换把固定参考帧中的物理量映射至随转子一起转动的dq坐标系内,则可以获得更简洁直观的形式: \[ \left[\begin{array}{l} \psi_d \\ \psi_q \end{array}\right]=TP\times\left[\begin{array}{l} \psi_\alpha\\ \psi_\beta \end{array}\right], TP=\left[ \begin{matrix} cosθ & sinθ\\ -sinθ& cosθ \end{matrix} \right]\tag{2} \] 最终得出 dq 坐标系下的电磁关系式如下所示: \[ V_d = R_sI_d+p\Psi_d-L_m I_qω_e \] \[ V_q = R_sI_q+p\Psi_q+L_m I_d ω_e \] 此处 \(V_{d,q}, I_{d,q}\) 描述了沿径向(d-axis)与切向(q-axis)作用力大小的变化趋势;同时考虑到实际应用中常设定 Id=0 的策略来消除交叉耦合项的影响,从而使得控制系统设计更加容易实现稳定性和高性能的要求[^3]. ```matlab % MATLAB code snippet demonstrating Park transformation matrix implementation. function [vd,vq] = park_transform(v_alpha, v_beta, theta) % Define the Park transform matrix based on given angle 'theta' Tp = [cos(theta) sin(theta); ... -sin(theta) cos(theta)]; % Apply the transformation to input voltages in alpha-beta frame vspace = [v_alpha; v_beta]; vd_vq = Tp * vspace; % Extract transformed components into separate variables vd = vd_vq(1); vq = vd_vq(2); end ```
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值