开启干扰观测器系列,一共四种,分别是:
1、基于名义逆模型的干扰观测器;
2、基于非线性观测器的干扰观测器;
3、基于状态观测器的干扰观测器;
4、基于扩张状态在观测器的干扰观测器。
基于名义逆模型的观测器利用鲁棒模型匹配原理设计干扰补偿器。鲁棒模型匹配以经典控制理论为依据,设计过程中考虑了干扰及不确定性等因素,设计目标在于 使干扰到所关心输出的传递函数等于或近似为零。如下图所示,通过观测输出和控制对象的逆传递函数,就可以近似的到外界干扰,然后将其引入控制系统中进行补偿,理论上便消除了干扰产生的影响。在图中,
可以表示干扰观测器,用于对干扰进行估计,
项需要满足一定的函数转换关系,保证干扰补偿的正确性,
是一个滤波器,用来限定干扰抑制的带宽。
简化系统模型如下:其中为提供力矩的执行机构的传递函数,文中以飞轮为例,在无人机中也可以指无刷电机的传递函数,电机控制系统中可以指电流环,通常
可以用一阶惯性环节代替,如果
的带宽和上一环的带宽相比大五倍以上,可以认为
。
其中:是包含挠性等不确定性影响的广义干扰力矩,
是执行机构驱动指令,
是执行机构输出力矩,
是俯仰角速度。根据角速度输出和被控对象等信息可以得到广义干扰
的计算值(观测值)
(1)
为了消除广义干扰的影响,需要在控制器对应的控制力矩基础上添加的补偿器力矩为
(2)
相应的需要添加到执行机构的执行指令可以根据
的模型结合式(2)逆推得到
(3)
飞轮执行机构的模型可以简化为一阶惯性环节
(4)
因此可知公式(3)为存在二阶微分,因此对反馈中噪声的放大作用是相当可观的,如果直接加入控制系统将带来非常大的影响,必须抑制噪声带来的影响。最常用的方法即是设计低通滤波器来抑制噪声。设计合适的低通滤波器是观测器最为关键的部分,要在性能和稳定性之间折中,理想是希望在低频时
,高频时
,可以设置为如下的三阶低通滤波器,更加系统复杂的滤波器设计见注2。
滤波器对于干扰补偿器干扰抑制性能起关键作用,因此必须合理设计。
可以选取为
(5)
式中:是待设计参数。可以看出
是由以
为截止频率的三个低通滤波器串联组成的,因此以上三个参数的选取,将决定干扰补偿器的性能。
的值越大,
越趋近于1;当
取值较小时,则不能有效地抑制期望频率范围内的干扰。
最终的模型如下:
通常的框图表示为下图: