矩阵的特征值和特征向量

矩阵特征值和特征向量定义

       A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。

 案例:

 Matlab:

 求矩阵H的全部特征值,构成对角阵M;并产生矩阵X,X各列是相应的特征向量。


>> H=[4 2 -5;6 4 -9;5 3 -7]

H =

     4     2    -5
     6     4    -9
     5     3    -7

>> e=eig(H)

e =

   1.0000 + 0.0000i
   0.0000 + 0.0000i
   0.0000 - 0.0000i

>> [X,M]=eig(H)

X =

   0.5774 + 0.0000i   0.2673 - 0.0000i   0.2673 + 0.0000i
   0.5774 + 0.0000i   0.8018 + 0.0000i   0.8018 + 0.0000i
   0.5774 + 0.0000i   0.5345 - 0.0000i   0.5345 + 0.0000i


M =

   1.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 - 0.0000i

>> 

特征值和特征向量的集合意义

特征向量与特征值的几何意义_Σίσυφος1900的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值