高阶同步压缩变换--占坑

本文探讨了同步压缩变换在语音、振动、心电及引力波信号处理中的应用,介绍了FSST和FOSST等不同阶数的同步压缩变换,并通过实例展示了它们在时频谱压缩和噪声水平变化下的效果。此外,还对比了STFT、FSST2至FSST4的时频谱特征,特别关注了引力波信号的解析能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章先不讲任何理论相关的东西,因为太多,后面十几篇文章慢慢讲,包括在语音信号处理、振动信号处理、心电信号出来及在引力波信号方面的应用,首先看一下前置文章

同步压缩变换初探 - 哥廷根数学学派的文章 - 知乎 同步压缩变换初探 - 知乎

再看连续小波变换 - 哥廷根数学学派的文章 - 知乎 再看连续小波变换 - 知乎

首先,给几个术语

FSST1: 标准同步压缩变换(一阶,基于短时傅里叶变换)standard synchrosqueezing

FSST2: 垂直二阶同步压缩变换vertical second-order synchrosqueezing

FSST3: 垂直三阶同步压缩变换vertical third-order synchrosqueezing

FSST4: 垂直四阶同步压缩变换vertical fourth-order synchrosqueezing

FRSTFT: 重排短时傅里叶变换reassigned STFT

FOSST: 倾斜同步压缩变换oblique synchrosqueezing

首先生成复信号

a1 = exp(2*(1-t).^3 + 1.5*t.^4);
a2 = 1+ 5*t.^3 + 7*(1-t).^6;

phi1 = 50*t+30*t.^3-20*(1-t).^4;
phi2 = 340*t-2.*exp(-2*(t-0.2)).*sin(14*pi.*(t-0.2));

if1 = 50+90*t.^2+80*(1-t).^3; 
if2 = 340+4*exp(-2*(t-0.2)).*sin(14*pi.*(t-0.2))-28*pi.*exp(-2*(t-0.2)).*cos(14*pi.*(t-0.2)); 

s1 = a1.*exp(2*pi*1i*(phi1));
s2 = a2.*exp(2*pi*1i*(phi2));

s = s1+s2;

看一下各个部分实虚部波形

FigHandle(1) = figure; 
set(FigHandle(1),'units','normalized','outerposition',[0 0 1 1]);
plot(t, real(s1), 'm'); 
hold on; plot(t, a1, 'k', 'linewidth', 2) ;
legend('Re(f_1)','A_{1}','Location','south','Orientation','horizontal') ; 

FigHandle(2) = figure; 
set(FigHandle(2),'units','normalized','outerposition',[0 0 1 1]);
plot(t, real(s2), 'g'); 
hold on; plot(t, a2, 'k', 'linewidth', 2) ;
legend('Re(f_2)','A_{2}','Location','south','Orientation','horizontal') ; 

FigHandle(3) = figure; 
set(FigHandle(3),'units','normalized','outerposition',[0 0 1 1]);
plot(t, real(s), 'b') ;
legend('Re(f)','Location','south') ; 

看一下几种同步压缩方法的时频谱压缩效果

不同噪声水平下同步压缩的效果

看看引力波波形

STFT时频谱

FSST2时频谱

FSST3时频谱

FSST4时频脊线提取

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值