数学四大思想八大方法_孩子自主找寻适合自己的思维方法,培养数学思想,才能学好数学...

孩子在学习数学时,无论是学新知识,还是利用已有知识解决新问题,均需要找寻适合自己思维方法,才能得以解决问题,从而培养数学思想,才能学好数学。

一、利用类比方法,达成知识的正迁移

孩子在课前可以对新知识进行预学,温故相关的旧知识,当孩子能够把新知识新问题与已有的相类似的知识进行类比分析,进而找到解决问题的方法,这样就基本实现了知识和方法的正迁移。

施教者在孩子学习数学过程中,组织孩子利用类比的思维方法进行展现与成效汇报,纠正孩子的错误思考思路,从而提高解决问题的能力,比如:由整数运算的运算定律迁移到小数、分数、百分数的运算定律的直接类比;应用问题解决中数量关系相近的问题的类比;代数与算术的类比;空间与平面的类比;无线与有线的类比;曲与直的类比等等。

8bbb75bd4566a96d1df75d24cfc56d82.png

二、利用推导演绎方法,达成数学转化思想

转化思想是数学学习中最常用的一种思想方法,是根据孩子已有的生活经验和知识经验,对未知陌生复杂的问题进行转化,最终使新问题得到解决的思想方法。

施教者通过引导孩子利用旧知识来解决新知识,让孩子自主产生知识转化的需求,利用推导演绎方法化新为旧来学习,而理解新知识的数学转化思想,这样能更有效的促进孩子学习知识和提高能力。

例如:学习梯形面积时,可以运用已学平面图形的计算公式推导出梯形面积计算公式:

1、大前提:长方形的面积等于长乘宽、正方形的面积等于边长乘边长、平行四边形的面积等于底乘高或三角形的面积等于底乘高除以2(已学平面图形面积计算方法)。

2、小前提:

(1)两个同样完全相同的梯形可以拼成的已学平面图形面积,它的面积可以是长方形、平行四边形、三角形,特殊时是正方形。

(2)可以用一个梯形剪拼成已学平面图形面积。

3、结论:

(1)两个同样完全相同的拼成的已学图形面积均会等于长乘宽、边长乘边长、底乘高:

(2)用一个梯形剪拼成已学平面图形面积

=(上底+下底)X(高÷2) 【长方形、平行四边形,特殊时是正方形,高是梯形高的一半】

=[(上底+下底)÷2] X高 【长方形、平行四边形,特殊时是正方形,高是与梯形高相同】

=(上底+下底)X高÷2 【拼成的是大三角形,高是与梯形高相同】

4、推导:

(1)等式性质计算:再根据等式的性质推出一个梯形的面积,就等于上底加上下底的和乘以高的积除以2。

(2)运算定律转化:通过运用乘法交换律和结合律,可以统一理解为"梯形的面积=(上底+下底)X高÷2"

这样,通过多种化新为旧的思维方法,开拓把新知识转化为旧知识进行解决,搭建新旧知识桥梁的过程,正是知识转化的过程,有利于孩子潜移默化地温故知新,又巧妙的完成了新知识的建构,从而实现高效学习数学。

dad938bc1c04ee43c3fa68a4b8356ba0.png

三、"化数为形"的方法,形成数感和形象思维

学习数学中一些关于数的问题比较抽象,不利于理解和解决,采用"化数为形"(图像法)是一种重要的数学转化思想,也是解决数学问题的有效方法。施教者要善于运用"数"和"形"之间的紧密联系打造直观形象的理解,让孩子借助"形"来理解"数"的含义,加深孩子对知识的掌握。例如:学习异分母分数的加减法,可以利用线段图或长正方形图来表示通分的理解,能把抽象的分数算式直观的表示出来,从而发现其中的规律,更简单高效的解决问题。

这样,通过"化数为形"的运用,不仅可以培养孩子的数感和形象思维,还能发展孩子应用知识解决实际问题的能力。

四、综合发现法,养成逆向追寻思考的发散思维

数学是一门具有严密的逻辑性与思考性的理性学科,不仅代表着一种思维方式,更代表着一种理性精神。施教者就应该从孩子的真实困惑开始,促动孩子数学的理性思考,揭示孩子思考和探究知识背后蕴含的道理。

然而,孩子常常对新知识理解不够,不能运用新知识解决实际问题的现象。施教者要引导孩子将新知识与旧知识联系起来,利用综合发现法沟通知识的本质道理,从而构建新的知识体系。

例如:孩子学习了《确定位置(一)》后,基本理解了方向和距离能确定平面上一个点的位置的道理。这好像学习任务已经完成了。其实,施教者还可以通过引导孩子回忆以前学过用"数对"确定位置的方法。启发孩子有什么新发现?这样就能引导孩子跳出眼前的问题,逆向追寻思考,退回到知识产生的源头,将两种确定位置的方法进行深度比较,寻找知识之间的联结点:

1、"数对"确定位置:只有行数和列数的两个数据都确定,才能在平面上的两条直线相交成一个点。

2、"方向和距离"确定位置:只有当方向所在的射线与距离所在的圆,在平面上相交整一个点,才能确定平面上点的具体位置。

这样,施教者就能引导孩子返回到"点"的位置,去找寻两种确定位置的方法,形成两种确定位置的方法的路径,构建新的知识体系。

3f29a6b47df19a712f39e7a080d5f3b7.png

总的来说,通过回归知识的本源之处解读说理,找到新旧知识之间的内在联结,将新知纳入原有的知识体系,才能帮助才孩子主动更新建构有效的、巩固的认知结构体系,将脑海中零散的知识得以重整,使得孩子的学习真正深入,形成自己的思维方法的数学思想,才能学好数学。

本文原创是@暖阳鸽说教 ,欢迎关注,带你一起长知识!#学问分享官##教育那些事##大咖教育MCN#,如果你有更好的方法和建议,欢迎留言与点评!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值