旋转矩阵求旋转角度_欧拉角和旋转矩阵之间的转换

a44b0e92e83836faa493899db455c179.png

在使用Eigen时,经常会遇到旋转矩阵,旋转向量,四元数,欧拉角之间的两两相互转换。这里最常见、最容易出错的是欧拉角和旋转矩阵之间的相互转换。下面就欧拉角和旋转矩阵之间的转换进行详细分析。

a52377590108c5fb3ceb221d7f472684.png
图1 旋转顺序Z-Y-X,正方向内旋

1. 欧拉角

(1)欧拉角的叫法:

  • 欧拉角的叫法不固定,跟坐标轴的定义强相关。
  • 在图1中,假设X是车头,Y是车左方,Z是车上方,那么绕X轴旋转得到的是roll,绕Y轴旋转得到的是pitch,绕Z轴得到的是yaw。
  • 在图1中,假设Y是车头,X是车右方,Z是车上方,那么绕X轴旋转得到的是pitch,绕Y轴旋转得到的是roll,绕Z轴得到的是yaw。

(2)欧拉角正负:

  • 如果是右手系,旋转轴正方向面对观察者时,逆时针方向的旋转是正、顺时针方向的旋转是负。
  • 亦可这样描述:使用右手的大拇指指向旋转轴正方向,其他4个手指在握拳过程中的指向便是正方向。
  • 如图1中的三次旋转都是正向旋转。

(3)欧拉角的范围:

  • 这个要具体问题具体对待。
  • 假如是车体坐标系(x-前,y-左,z-上),那么roll和pitch应该定义在(-90°,+90°),yaw应该定义在(-180°,+180°)。
  • 假如是飞机坐标系,那么roll、pitch和yaw都应该定义在(-180°,+180°)。
  • Eigen中的默认范围roll、pitch和yaw都是(-180°,+180°)。

(4)明确旋转顺序和旋转轴:

  • 对于x,y,z三个轴的不同旋转顺序一共有(x-y-z,y-z-x,z-x-y,x-z-y,z-y-x,y-x-z)六种组合,在旋转相同的角度的情况下不同的旋转顺序得到的姿态是不一样的。
  • 比如,先绕x轴旋转alpha,再绕y轴旋转beta;先绕y轴旋转beta,再绕x轴旋转alpha。这两种顺序得到的姿态是不一样的。

(5)内旋和外旋:

  • 每次旋转是绕固定轴(一个固定参考系,比如世界坐标系)旋转,称为外旋。
  • 每次旋转是绕自身旋转之后的轴旋转,称为内旋。
  • 下图说明了内旋和外旋的区别。

98b9a30cc6eade1545cb519d461e93e8.png

2. 旋转矩阵

假设绕XYZ三个轴旋转的角度分别为

,则三次旋转的旋转矩阵计算方法如下:

按照内旋方式,Z-Y-X旋转顺序(指先绕自身轴Z,再绕自身轴Y,最后绕自身轴X),可得旋转矩阵(内旋是右乘):

按照外旋方式,X-Y-Z旋转顺序(指先绕固定轴X,再绕固定轴Y,最后绕固定轴Z),可得旋转矩阵(外旋是左乘):

故R1=R2,具体不在此证明,记住即可。这个结论说明ZYX顺序的内旋等价于XYZ顺序的外旋。

slam十四讲中提到的常用旋转顺序是Z-Y-X,对应rpy,指的就是内旋(绕自身轴)Z-Y-X顺序。而欧拉角转换成旋转矩阵(相对于世界坐标系的旋转矩阵)通常是按外旋方式(绕固定轴),即X-Y-Z顺序,所以旋转矩阵为:

3. 欧拉角和旋转矩阵之间的转换程序示例

下面程序分别使用Eigen和自定义函数测试欧拉角和旋转矩阵之间的转换:

#include <iostream>
#include <Eigen/Core>
#include <Eigen/Geometry>

using namespace std;

Eigen::Matrix3d eulerAnglesToRotationMatrix(Eigen::Vector3d &theta);
bool isRotationMatirx(Eigen::Matrix3d R);
Eigen::Vector3d rotationMatrixToEulerAngles(Eigen::Matrix3d &R);

const double ARC_TO_DEG = 57.29577951308238;
const double DEG_TO_ARC = 0.0174532925199433;

int main()
{
    // 设定车体欧拉角(角度),绕固定轴
    double roll_deg = 0.5;      // 绕X轴
    double pitch_deg = 0.8;     // 绕Y轴
    double yaw_deg = 108.5;     // 绕Z轴

    // 转化为弧度
    double roll_arc = roll_deg * DEG_TO_ARC;    // 绕X轴
    double pitch_arc = pitch_deg * DEG_TO_ARC;  // 绕Y轴
    double yaw_arc = yaw_deg * DEG_TO_ARC;      // 绕Z轴

    cout << endl;
    cout << "roll_arc = " << roll_arc << endl;
    cout << "pitch_arc = " << pitch_arc << endl;
    cout << "yaw_arc = " << yaw_arc << endl;

    // 初始化欧拉角(rpy),对应绕x轴,绕y轴,绕z轴的旋转角度
    Eigen::Vector3d euler_angle(roll_arc, pitch_arc, yaw_arc);

    // 使用Eigen库将欧拉角转换为旋转矩阵
    Eigen::Matrix3d rotation_matrix1, rotation_matrix2;
    rotation_matrix1 = Eigen::AngleAxisd(euler_angle[2], Eigen::Vector3d::UnitZ()) *
                       Eigen::AngleAxisd(euler_angle[1], Eigen::Vector3d::UnitY()) *
                       Eigen::AngleAxisd(euler_angle[0], Eigen::Vector3d::UnitX());
    cout << "nrotation matrix1 =n" << rotation_matrix1 << endl << endl;

    // 使用自定义函数将欧拉角转换为旋转矩阵
    rotation_matrix2 = eulerAnglesToRotationMatrix(euler_angle);
    cout << "rotation matrix2 =n" << rotation_matrix2 << endl << endl;

    // 使用Eigen将旋转矩阵转换为欧拉角
    Eigen::Vector3d eulerAngle1 = rotation_matrix1.eulerAngles(2,1,0); // ZYX顺序,yaw,pitch,roll
    cout << "roll_1 pitch_1 yaw_1 = " << eulerAngle1[2] << " " << eulerAngle1[1] 
         << " " << eulerAngle1[0] << endl << endl;

    // 使用自定义函数将旋转矩阵转换为欧拉角
    Eigen::Vector3d eulerAngle2 = rotationMatrixToEulerAngles(rotation_matrix1); // roll,pitch,yaw
    cout << "roll_2 pitch_2 yaw_2 = " << eulerAngle2[0] << " " << eulerAngle2[1] 
         << " " << eulerAngle2[2] << endl << endl;

    return 0;
}

Eigen::Matrix3d eulerAnglesToRotationMatrix(Eigen::Vector3d &theta)
{
    Eigen::Matrix3d R_x;    // 计算旋转矩阵的X分量
    R_x <<
            1,              0,               0,
            0,  cos(theta[0]),  -sin(theta[0]),
            0,  sin(theta[0]),   cos(theta[0]);

    Eigen::Matrix3d R_y;    // 计算旋转矩阵的Y分量
    R_y <<
            cos(theta[1]),   0, sin(theta[1]),
            0,   1,             0,
            -sin(theta[1]),  0, cos(theta[1]);

    Eigen::Matrix3d R_z;    // 计算旋转矩阵的Z分量
    R_z <<
            cos(theta[2]), -sin(theta[2]), 0,
            sin(theta[2]),  cos(theta[2]), 0,
            0,              0,             1;
    Eigen::Matrix3d R = R_z * R_y * R_x;
    return R;
}


bool isRotationMatirx(Eigen::Matrix3d R)
{
    double err=1e-6;
    Eigen::Matrix3d shouldIdenity;
    shouldIdenity=R*R.transpose();
    Eigen::Matrix3d I=Eigen::Matrix3d::Identity();
    return (shouldIdenity - I).norm() < err;
}

Eigen::Vector3d rotationMatrixToEulerAngles(Eigen::Matrix3d &R)
{
    assert(isRotationMatirx(R));
    double sy = sqrt(R(0,0) * R(0,0) + R(1,0) * R(1,0));
    bool singular = sy < 1e-6;
    double x, y, z;
    if (!singular)
    {
        x = atan2( R(2,1), R(2,2));
        y = atan2(-R(2,0), sy);
        z = atan2( R(1,0), R(0,0));
    }
    else
    {
        x = atan2(-R(1,2), R(1,1));
        y = atan2(-R(2,0), sy);
        z = 0;
    }
    return {x, y, z};
}

程序输出如下:

roll_arc = 0.00872665
pitch_arc = 0.0139626
yaw_arc = 1.89368

rotation matrix1 =
 -0.317274  -0.948326 0.00384548
  0.948231  -0.317177  0.0160091
-0.0139622 0.00872568   0.999864

rotation matrix2 =
 -0.317274  -0.948326 0.00384548
  0.948231  -0.317177  0.0160091
-0.0139622 0.00872568   0.999864

roll_1 pitch_1 yaw_1 = 0.00872665 0.0139626 1.89368

roll_2 pitch_2 yaw_2 = 0.00872665 0.0139626 1.89368

可以看出二者的输出结果是一样的。

4. 总结

欧拉角和旋转矩阵之间的转换要注意的细节很多,在使用时我们一定要明确欧拉角的旋转顺序、内旋还是外旋、正向旋转还是反向旋转以及欧拉角范围。另外,文章中如果有错误的地方,还请大佬不要喷,在评论区指出来,我核实后会修改的,谢谢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值