SLAM 技术的发展距今已有 30 余年的历史,涉及的技术领域众多。由于本身包含许多步骤,每一个步骤均可以使用不同算法实现,SLAM 技术也是机器人和计算机视觉领域的热门研究方向。
一. 什么是SLAM
SLAM 是同步定位与地图构建 (Simultaneous Localization And Mapping) 的缩写,最早由 Hugh Durrant-Whyte 和 John J.Leonard 提出,SLAM是机器人与计算机视觉领域中的基本问题。它主要研究装置通过各种传感器在未知环境中的感知和定位自身方位并同时构建环境三维地图。所以视觉slam根本就是回答两个问题,机器人在哪和机器人本身所处的环境是什么样的。这和人进入到一个陌生环境时所思考的问题非常相似。比如人被进入一个陌生的屋子(环境),人首先会观察观察自身处的环境(屋子),接下来会思考自身所处的位置。人是通过眼睛、大脑来完成观察和思考,而机器人是利用摄像头和处理器来完成人做作的观察和思考。SLAM有着广泛的应用,如室内扫地机、室内服务机器人、自动驾驶、空中的无人机、、虚拟现实、增强现实等,基本上,需要定位和三维感知的应用都需要用到SLAM技术。
二.SLAM的常用Sensor有哪些?
SLAM常用的Sensor有红外传感器,激光雷达或者深度传感器,摄像头,惯性传感器:
- 红外传感器:主要