大模型微调技术(Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA)

文章介绍了多种针对大模型的微调技术,包括Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuningv2和LoRA,这些方法旨在减少对大规模算力的需求,通过调整模型的一小部分参数来适应特定领域的任务。每种方法都有其独特的优势和适用场景,例如Adapter-Tuning参数量小,Prefix-Tuning只需微调少量参数,P-Tuningv2在多层插入prompt,而LoRA通过低秩矩阵适应性地调整模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        2022年11月30日,ChatGPT发布至今,国内外不断涌现出了不少大模型,呈现“百模大战”的景象,比如ChatGLM-6B、LLAMA、Alpaca等模型及在此模型基础上进一步开发的特定领域的大模型。今年3月15日,GPT-4发布后,也出现了一些多模态的大模型,比如百度的文心一言、讯飞星火认知大模型等等。

        要想训练一个针对特定领域的大模型,如果采用全量参数微调(Full Parameter Futuing)的方法,一方面需要大量的高质量数据集、另一方需要较高的算力,比如8块A100 80G GPU,甚至需要成百上千的GPU。一般的小企业或者高校研究所对此望而却步。

        那么,有没有不需要大量算力就能在特定领域数据上对大模型进行微调的方法呢?

        下面,给大家介绍几种常见的大模型微调方法:Adapter-Tuning、Prefix-Tuning、Prompt-Tuning(P-Tuning)、P-Tuning v2、LoRA。并介绍各种方法之间的效果对比。

1. Adapter-Tuning

        该方法出自2019年的论文“Parameter-Efficient Transfer Learning for NLP ”

        论文链接:https://arxiv.org/pdf/1902.00751.pdf

        github链接:GitHub - google-research/adapter-bert

        模型结构如上图左侧所示, 微调时冻结预训练模型的主体,由Adapter模块学习特定下游任务的知识。其中,Adapter模块结构如上图右侧所示,包含两个前馈层和一个中间层,第一个前馈层和中间层起到一个降维的作用,后一个前馈层和中间层起到升维的作用。

        Adapter调优的参数量大约为LM参数的3.6%。

2. Prefix-Tuning

        该方法出自2021年的论文“Prefix-Tuning: Optimizing Continuous Prompts for Generation”

        论文链接:https://arxiv.org/pdf/2101.00190.pdf

        github链接:GitHub - XiangLi1999/PrefixTuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation

         上图展示了Full Parameter Finetuning与Prefix Tuning之间的区别,其中,红色部分是需要微调的参数,可以发现,Prefix Tuning只是在每个任务前有少量的prefix的参数,比如翻译任务,可以在每句话的前面加上“翻译:”来引导模型进行翻译功能。

        实验结果表明:

        (1)在完整的数据集上,Prefix-Tunning和Fine-Tuning在table-to-text上的结果是comparable的,而在summarization任务上,prefix-tuning的效果略有下降。但在low-data settings和unseen topics的情况下,Prefix-Tuning的效果更佳。

        (2)与Adapter-Tuning相比,Trefix-Tuning在相同的表现下只需调节更少的参数量。

        (3)不同的前缀长度有不一样的性能表现,在一定程度上长度越长,prefix的效果越明显,但也可能出现降低的问题。实验表明,prefix长度对推理速度影响不大,因为prefix上的attention是并行计算的。

        Prefix Tuning参数规模约为LM模型整体规模的0.1%。

3. Prompt-Tuning(P-Tuning)

        该方法出自论文2021年的论文“GPT Understands, Too”

        论文链接:https://arxiv.org/pdf/2103.10385.pdf

        github链接:https://github.com/THUDM/P-tuning

         上图展示了P-Tuning和Discrete Prompt Search之间的区别,也引出了P-Tuning提出的目的。因为离线的Prompt对于连续的神经网络只是次优解,prompt的词之间是彼此关联的,需要将其关联起来。于是,P-Tuning将一些伪prompt输入至LSTM中,然后利用LSTM的输出向量来替代原始的prompt token,然后一起输入至预训练语言模型中。而且,LSTM和随着预训练语言模型一起训练。

        论文中的实验结果表明:

        (1)基于bert-base模型,在5/7的数据集上,P-tuning的效果比finetune等更好。
        (2)基于gpt模型,在全部的数据集上,P-tuning的效果都比finetune等更好。
        (3)对比gpt-base和bert-base,在6/7的数据集上,基于P-tuning,gpt-base的效果都更好。
        (4)在自然语言理解任务上,双向模型比单向模型更好。
 

4. P-Tuning v2

        该方法出自于2022年的论文“P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks”

        论文链接:https://arxiv.org/pdf/2110.07602.pdf

        github链接:GitHub - THUDM/P-tuning-v2: An optimized deep prompt tuning strategy comparable to fine-tuning across scales and tasks

         上图中,左侧为P-Tuning,右侧为P-Tuning v2。P-Tuning v2与P-Tuning的不同之处在于:将只在第一层插入continuous prompt修改为在许多层都插入continuous prompt,层与层之间的continuous prompt是相互独立的。

        P-Tuning v2与Prefix-Tuning的改进之处在于,除了输入的embedding外,其它的Transformer层也加了前置的prompt。

        做出这种改进的原因:

        (1)先前的工作显示,Prompt tuning在normal-sized的预训练模型上效果一般。

        (2)现有的Prompt tuning方法在较难的文本序列问题上效果不好。

        经过这样的改进,模型可训练参数的量从0.01%增加到了0.1%~3%。

        实验结果表明:

        (1)P-tuning V2可以与传统Fine-tuning有差不多的效果。

        (2)Multi-task P-tuning V2效果更好,分析认为可能是变相的数据增强带来的影响。 

        (3)在不同的任务上的表现和prompt的长度有关系。

        (4)对LSTM/MLP层的重新参数化不一定有效,取决于任务和数据集。

5. LoRA

        LoRA(Low-Rank Adaptation)出自2021年的论文“LoRA: Low-Rank Adaptation of Large Language Models”

        论文链接:https://arxiv.org/abs/2106.09685

        github链接:https://github.com/microsoft/LoRA

   

        LoRA技术冻结预训练模型的权重,并在每个Transformer块中注入可训练层(称为秩分解矩阵),即在模型的Linear层的旁边增加一个“旁支”A和B。其中,A将数据从d维降到r维,这个r是LoRA的秩,是一个重要的超参数;B将数据从r维升到d维,B部分的参数初始为0。模型训练结束后,需要将A+B部分的参数与原大模型的参数合并在一起使用。

        LoRA微调的优点包括:

        (1)训练速度更快。

        (2)计算需求更低。

        (3)训练权重更小。

6. 微信群里某大佬总结的各方法优缺点对比(仅供参考):

(1) Fine-Tuning(标准微调)
优点:

        简单易用:直接在预训练模型上进行微调。
        适应性强:可以针对特定任务调整整个模型的参数。
        效果显著:通常能显著提高模型在特定任务上的表现。
缺点:

        计算成本高:需要调整模型的大量参数。
        数据需求较高:为了有效微调,通常需要较多的标注数据。
适用场景:当有足够的标注数据和计算资源时,适用于大多数NLP任务。

(2)Parameter-Efficient Fine-Tuning(PEFT)
优点:

        参数高效:只修改或优化模型的一小部分参数。
        节省计算资源:比完全微调需要的资源少。
缺点:

        可能效果有限:对于某些复杂任务,仅优化少量参数可能不足以达到最佳效果。
适用场景:资源受限的情况,或者需要快速适应新任务时。

(3) Prompt-Tuning
优点:

        无需改变模型架构:通过设计任务相关的提示(prompt),引导模型生成所需的输出。
        资源消耗少:不需要改变模型参数。
缺点:

        需要精心设计prompt:有效的prompt设计可能需要丰富的经验和实验。
适用场景:快速适应新任务,尤其适用于资源有限的场景。

(4) LoRA(Low-Rank Adaptation)
优点:

        参数高效:通过引入低秩矩阵来调整模型,减少需要优化的参数数量。
        节省内存和计算资源。
缺点:

        效果可能有限:对于某些复杂任务可能无法达到完全微调的效果。
        需要一定的技术知识来实现和调试。
适用场景:需要参数高效调整的场景,特别是在资源有限的情况下。

(5) P-Tuning
优点:

        可解释性强:通过可训练的prompt向量进行微调。
        资源消耗相对较少。
缺点:

        需要适当的调整和实验来找到最佳配置。
        可能不适用于所有类型的任务。
适用场景:适用于需要提高模型解释性的任务,以及资源有限的情况。

参考文献:

1.预训练模型微调 | 一文带你了解Adapter Tuning - 知乎  

2.论文阅读:Prefix-Tuning - 知乎 

3.Prefix-Tunning - 知乎 

4.【自然语言处理】【Prompt】P-tuning_BQW_的博客-CSDN博客  

5.P-tuning v1 v2_开心的火龙果的博客-CSDN博客 

6.P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks_Tsukinousag1的博客-CSDN博客

7.LoRA模型是什么?_黑风风的博客-CSDN博客  

8.LoRA: Low-Rank Adaptation of Large Language Models 简读 - 知乎  

<think>好的,我现在需要帮用户整理关于P-Tuning v2LoRA微调的典型面试问题及回答。首先,我得回忆一下这两种微调方法的基本概念和区别。P-Tuning v2主要是通过引入可训练的连续提示向量(prompt tuning),而LoRA则是通过低秩适配器在模型的权重矩阵中注入可训练参数。接下来,用户可能想知道面试中常被问到的问题类型,比如两者的对比、优缺点、适用场景等等。 用户可能希望这些问题能够覆盖理论理解、实际应用以及比较分析。因此,我需要分门别类地整理问题,比如基础概念题、对比分析题、实现细节题、应用场景题等。每个问题下需要简明扼要的回答,同时确保技术细节准确无误。例如,可能会问“P-Tuning v2的核心改进是什么?”这时候需要回答它解决了v1中的哪些问题,比如深度提示和参数效率。 另外,考虑到面试中可能出现的实战题,例如如何选择这两种方法,需要结合具体场景来分析。比如,如果资源有限,LoRA可能更适合,因为它参数更少,训练更快。而需要更好效果时,P-Tuning v2可能更优。同时,还要注意两者的结合使用,这在面试中可能是一个加分点。 还需要检查是否有常见的误解需要澄清,比如是否LoRA只能用于注意力层,或者P-Tuning v2是否需要修改模型结构。回答时要准确指出这些误解,并提供正确的信息。此外,面试官可能会问及参数效率、训练速度、显存占用等实际因素,这些都需要详细对比。 最后,要确保回答结构清晰,层次分明,使用适当的Markdown格式,如表格和代码块,来增强可读性。同时,语言要简洁,避免冗长,但又要覆盖关键点。可能还需要补充一些示例,比如代码片段,展示如何实现这两种方法,帮助用户更好地理解。</think>以下是针对P-Tuning v2LoRA微调技术的典型面试问题及参考答案整理,采用结构化分类组织: --- ### 一、基础概念题 **Q1: 简述P-Tuning v2的核心改进** *A1:* - 解决v1版本的两大痛点: 1. **深度连续性**:在每一层Transformer都插入可训练提示向量(Prefix-tuning思路) 2. **参数效率**:通过多层共享提示参数减少参数量(典型配置:每层共享256维向量) - 数学形式: 对第$l$层输入的增强: $$ h^{(l)} = [P^{(l)}; h^{(l)}_{original}]W^{(l)} $$ 其中$P^{(l)}$为可训练提示向量 --- ### 二、对比分析题 **Q2: LoRA与P-Tuning v2的本质区别** *A2:* | 维度 | LoRA | P-Tuning v2 | |------------|-------------------------------|------------------------------| | **修改位置** | 权重矩阵旁路($W + \Delta W$) | 输入空间扩展(添加prefix) | | **参数分布** | 分散在多层线性层 | 集中在输入/各层prefix | | **显存占用** | 较高(需缓存适配器梯度) | 较低(仅提示向量相关参数) | | **适配速度** | 更快收敛(直接修改权重) | 较慢(依赖prompt语义学习) | **Q3: 为什么LoRA常采用较小的rank值?** *A3:* 1. **低秩假设**:语言模型的权重更新具有低秩特性(rank=8时可保留95%以上信息) 2. **计算优势**:分解矩阵$B \cdot A$的参数量为$r(d_{in}+d_{out})$,当$r \ll min(d_{in},d_{out})$时显著减少参数 3. **过拟合控制**:限制秩相当于隐式正则化(实验表明rank=8在多数任务表现最佳) --- ### 三、实现细节题 **Q4: 如何为LoRA选择目标层?** *A4:* 1. **经验法则**: - 优先选择`query`和`value`投影层(对语义理解最关键) - 输出层`dense`适配对生成任务更有效 2. **实验策略**: ```python # Hugging Face实现示例 peft_config = LoraConfig( target_modules=["query", "value", "dense"], # 关键层 r=8, lora_alpha=32, lora_dropout=0.1 ) ``` **Q5: P-Tuning v2如何实现参数共享?** *A5:* 通过**分块共享策略**: - 将深度网络划分为多个块(如每4层为一组) - 同一块内共享相同的提示向量 - 代码实现示例: ```python class PrefixEncoder(nn.Module): def __init__(self, num_layers, hidden_size): self.prefix = nn.Parameter( torch.randn(num_layers//4, prefix_length, hidden_size) ) # 每4层共享一个prefix ``` --- ### 四、应用场景题 **Q6: 何时选择LoRA/P-Tuning v2?** *A6:* 决策树分析 ```mermaid graph TD A[目标任务需求] --> B{需要快速迭代?} B -->|是| C[LoRA] B -->|否| D{数据量小于1万条?} D -->|是| E[P-Tuning v2] D -->|否| F[Full Fine-tuning] ``` **Q7: 如何结合两种方法?** *A7:* 混合微调策略(Hybrid-tuning): 1. **底层用LoRA**:增强基础语义理解能力 2. **高层用P-Tuning**:精细控制生成方向 3. 参数分配比例建议:7:3(LoRA层数 : P-Tuning层数) --- ### 五、实战陷阱题 **Q8: 为什么LoRA微调后模型会出现输出重复?** *A8:* 典型问题与解决方案: - **根本原因**:低秩适配导致生成多样性下降 - **调试方法**: 1. 增加`lora_dropout`值(0.1→0.3) 2. 调整`lora_alpha`(建议保持alpha/r=4) 3. 添加生成惩罚项: ```python model.generate(..., repetition_penalty=1.2) ``` **Q9: P-Tuning v2在长文本任务中效果差的可能原因** *A9:* 1. **位置编码冲突**:添加的prefix挤占原始token位置信息 2. **解决方案**: - 使用RoPE等相对位置编码 - 限制prefix长度(建议不超过总长度的10%) --- ### 六、前沿扩展题 **Q10: 如何理解LoRA与QLoRA的关系?** *A10:* - **QLoRA三要素**: 1. **4-bit量化**:通过NF4数据类型压缩原始模型 2. **双适配器**:在量化和反量化步骤插入LoRA 3. **分页优化器**:解决显存峰值问题 - **关键优势**:相比原始LoRA显存占用减少33%(7B模型可在24GB显存运行) --- ### 附:高频考点速记表 | 考点 | LoRA要点 | P-Tuning v2要点 | |----------------------|-------------------------------------|-----------------------------------| | 核心创新点 | 低秩矩阵分解 | 深度连续提示向量 | | 参数效率 | 约0.1%原始参数量 | 约0.3%原始参数量 | | 显存占用 | 较高(需存储适配器梯度) | 较低(仅提示向量) | | 典型应用场景 | 数据量中等(1万-10万条) | 小样本(<1千条) | | 与全量微调的效果差距 | 差距较小(平均差2-3%) | 差距较大(差5-8%) | 掌握这些核心要点,可以应对90%以上的技术面试相关问题。实际回答时建议结合具体实验数据(如「在XX数据集的实验中,LoRA仅用1.5%参数即达到97%的全量微调效果」)增强说服力。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值