
当
23式,下同)式得:
即:
九.加权不等式
9.1若
(26)式就是加权的均值不等式,简称加权不等式。
(26)式形式直接理解为:几何均值不大于算术均值。
十.赫尔德不等式
10.1若实数
当
10.2若
(28)式称为赫尔德不等式。
当
10.3赫尔德不等式还可以写成:
即:
简称:“幂均值的几何均值不小于积均值”。
(注:赫尔德与切比雪夫的不同点:赫尔德要求是
同调;赫尔德的积均值小,切比雪夫的积均值大。)
10.4若
(31)式称为加权赫尔德不等式。当
10.5
(32)称为普遍的赫尔德不等式。
10.6 推论:若
简称:”立方和的乘积不小于乘积和的立方“。
十一.闵科夫斯基不等式
11.1若
当
11.2若
当
11.3若
当
十二.牛顿不等式
12.1 若
的系数
.......
对每个
则(37)式类似于二项式定理,系数为:
12.2 若
当
(39)式称为牛顿不等式。
十三.麦克劳林不等式
13.1 若
当
(40)称为麦克劳林不等式。
未完,见主页文章
.