三个不等_高中数学竞赛常用的不等式归纳(续一)

3ea17690cc26ab74ae31270789321a60.png

时,
代入(23)(为减少篇幅就不在此写出完整的

23式,下同)式得:

即:

(25) (25)式正是(22).

九.加权不等式

9.1若

(
),且
,则:

(26)

(26)式就是加权的均值不等式,简称加权不等式。

(26)式形式直接理解为:几何均值不大于算术均值。

十.赫尔德不等式

10.1若实数

,实数
,则:
(27)

时,等号成立。(27)式称为
杨氏不等式

10.2若

为正实数,
,则:

(28)

(28)式称为赫尔德不等式。

时等号成立。

10.3赫尔德不等式还可以写成:

(29)

即:

,即:
(30)

简称:“幂均值的几何均值不小于积均值”。

注:赫尔德与切比雪夫的不同点:赫尔德要求是

,切比雪夫要求是

同调;赫尔德的积均值小,切比雪夫的积均值大。)

10.4若

为三个正实数序列,

,则:
(31)

(31)式称为加权赫尔德不等式。当

时,等号成立。

10.5

.
为正实数且
,则:
(32)

(32)称为普遍的赫尔德不等式

10.6 推论:若

,则:

(33)

简称:”立方和的乘积不小于乘积和的立方“。

十一.闵科夫斯基不等式

11.1若

为正实数,且
,则:

(34)

时,等号成立。 (34)式称为
第一闵科夫斯基不等式

11.2若

为正实数,且
,则:

(35)

时,等号成立。 (35)式称为
第二闵科夫斯基不等式

11.3若

为三个正实数序列,且

,则:

(36)

时,等号成立。 (36)式称为
第三闵科夫斯基不等式

十二.牛顿不等式

12.1 若

为任意实数考虑多项式:

(37)

的系数

作为
的函数可表达为:

.......

.

对每个

,我们定义
(38)

则(37)式类似于二项式定理,系数为:

.

12.2 若

为正实数,则对于每个
有:

(39)

时,等号成立。

(39)式称为牛顿不等式

十三.麦克劳林不等式

13.1 若

为正实数,按(38)定义,则:

(40)

时,等号成立。

(40)称为麦克劳林不等式

未完,见主页文章


.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值