莱布尼茨积分求导
莱布尼茨积分求导法则是微积分中用于处理具有可变上下限的定积分对变量求导的重要工具。它允许将积分上下限和被积函数的变化统一到一个公式中。
公式
针对
I
(
t
)
=
∫
a
(
t
)
b
(
t
)
f
(
x
,
t
)
d
x
I(t) = \int_{a(t)}^{b(t)} f(x, t) \, dx
I(t)=∫a(t)b(t)f(x,t)dx
对
t
t
t 求导可得
d
I
(
t
)
d
t
=
f
(
b
(
t
)
,
t
)
⋅
d
b
(
t
)
d
t
−
f
(
a
(
t
)
,
t
)
⋅
d
a
(
t
)
d
t
+
∫
a
(
t
)
b
(
t
)
∂
f
(
x
,
t
)
∂
t
d
x
\begin{aligned}\frac{dI(t)}{dt} &= f(b(t), t) \cdot \frac{db(t)}{dt} - f(a(t), t) \cdot \frac{da(t)}{dt} \\ & + \int_{a(t)}^{b(t)} \frac{\partial f(x, t)}{\partial t} \, dx\end{aligned}
dtdI(t)=f(b(t),t)⋅dtdb(t)−f(a(t),t)⋅dtda(t)+∫a(t)b(t)∂t∂f(x,t)dx
应用案例
示例 1:固定上下限 a a a 和 b b b
若积分的上下限为常数:
I
(
t
)
=
∫
a
b
f
(
x
,
t
)
d
x
I(t) = \int_a^b f(x, t) \, dx
I(t)=∫abf(x,t)dx
则公式化简为:
d
I
(
t
)
d
t
=
∫
a
b
∂
f
(
x
,
t
)
∂
t
d
x
\frac{dI(t)}{dt} = \int_a^b \frac{\partial f(x, t)}{\partial t} \, dx
dtdI(t)=∫ab∂t∂f(x,t)dx
示例 2:上下限依赖于 t t t
如:
I
(
t
)
=
∫
t
2
2
t
x
2
d
x
I(t) = \int_{t^2}^{2t} x^2 \, dx
I(t)=∫t22tx2dx
- 上限: b ( t ) = 2 t , d b ( t ) d t = 2 b(t) = 2t, \frac{db(t)}{dt} = 2 b(t)=2t,dtdb(t)=2;
- 下限: a ( t ) = t 2 , d a ( t ) d t = 2 t a(t) = t^2, \frac{da(t)}{dt} = 2t a(t)=t2,dtda(t)=2t;
- 被积函数: f ( x , t ) = x 2 f(x, t) = x^2 f(x,t)=x2,无显式依赖 t t t,即 ∂ f ( x , t ) ∂ t = 0 \frac{\partial f(x, t)}{\partial t} = 0 ∂t∂f(x,t)=0。
根据公式:
d
I
(
t
)
d
t
=
f
(
b
(
t
)
,
t
)
⋅
d
b
(
t
)
d
t
−
f
(
a
(
t
)
,
t
)
⋅
d
a
(
t
)
d
t
\frac{dI(t)}{dt} = f(b(t), t) \cdot \frac{db(t)}{dt} - f(a(t), t) \cdot \frac{da(t)}{dt}
dtdI(t)=f(b(t),t)⋅dtdb(t)−f(a(t),t)⋅dtda(t)
计算:
f
(
b
(
t
)
,
t
)
=
(
2
t
)
2
=
4
t
2
,
f
(
a
(
t
)
,
t
)
=
(
t
2
)
2
=
t
4
f(b(t), t) = (2t)^2 = 4t^2, \quad f(a(t), t) = (t^2)^2 = t^4
f(b(t),t)=(2t)2=4t2,f(a(t),t)=(t2)2=t4
代入:
d
I
(
t
)
d
t
=
4
t
2
⋅
2
−
t
4
⋅
2
t
=
8
t
2
−
2
t
5
\frac{dI(t)}{dt} = 4t^2 \cdot 2 - t^4 \cdot 2t = 8t^2 - 2t^5
dtdI(t)=4t2⋅2−t4⋅2t=8t2−2t5
最终结果:
d
I
(
t
)
d
t
=
8
t
2
−
2
t
5
\frac{dI(t)}{dt} = 8t^2 - 2t^5
dtdI(t)=8t2−2t5
总结
莱布尼茨积分法则处理任意可变上下限和被积函数显式依赖时的导数问题,其核心是上下限的贡献和被积函数的显式导数相结合。