莱布尼茨积分求导

莱布尼茨积分求导

莱布尼茨积分求导法则是微积分中用于处理具有可变上下限的定积分对变量求导的重要工具。它允许将积分上下限和被积函数的变化统一到一个公式中。


公式

针对 I ( t ) = ∫ a ( t ) b ( t ) f ( x , t )   d x I(t) = \int_{a(t)}^{b(t)} f(x, t) \, dx I(t)=a(t)b(t)f(x,t)dx
t t t 求导可得
d I ( t ) d t = f ( b ( t ) , t ) ⋅ d b ( t ) d t − f ( a ( t ) , t ) ⋅ d a ( t ) d t + ∫ a ( t ) b ( t ) ∂ f ( x , t ) ∂ t   d x \begin{aligned}\frac{dI(t)}{dt} &= f(b(t), t) \cdot \frac{db(t)}{dt} - f(a(t), t) \cdot \frac{da(t)}{dt} \\ & + \int_{a(t)}^{b(t)} \frac{\partial f(x, t)}{\partial t} \, dx\end{aligned} dtdI(t)=f(b(t),t)dtdb(t)f(a(t),t)dtda(t)+a(t)b(t)tf(x,t)dx


应用案例

示例 1:固定上下限 a a a b b b

若积分的上下限为常数
I ( t ) = ∫ a b f ( x , t )   d x I(t) = \int_a^b f(x, t) \, dx I(t)=abf(x,t)dx
则公式化简为:
d I ( t ) d t = ∫ a b ∂ f ( x , t ) ∂ t   d x \frac{dI(t)}{dt} = \int_a^b \frac{\partial f(x, t)}{\partial t} \, dx dtdI(t)=abtf(x,t)dx

示例 2:上下限依赖于 t t t

如:
I ( t ) = ∫ t 2 2 t x 2   d x I(t) = \int_{t^2}^{2t} x^2 \, dx I(t)=t22tx2dx

  • 上限: b ( t ) = 2 t , d b ( t ) d t = 2 b(t) = 2t, \frac{db(t)}{dt} = 2 b(t)=2t,dtdb(t)=2
  • 下限: a ( t ) = t 2 , d a ( t ) d t = 2 t a(t) = t^2, \frac{da(t)}{dt} = 2t a(t)=t2,dtda(t)=2t
  • 被积函数: f ( x , t ) = x 2 f(x, t) = x^2 f(x,t)=x2,无显式依赖 t t t,即 ∂ f ( x , t ) ∂ t = 0 \frac{\partial f(x, t)}{\partial t} = 0 tf(x,t)=0

根据公式:
d I ( t ) d t = f ( b ( t ) , t ) ⋅ d b ( t ) d t − f ( a ( t ) , t ) ⋅ d a ( t ) d t \frac{dI(t)}{dt} = f(b(t), t) \cdot \frac{db(t)}{dt} - f(a(t), t) \cdot \frac{da(t)}{dt} dtdI(t)=f(b(t),t)dtdb(t)f(a(t),t)dtda(t)

计算:
f ( b ( t ) , t ) = ( 2 t ) 2 = 4 t 2 , f ( a ( t ) , t ) = ( t 2 ) 2 = t 4 f(b(t), t) = (2t)^2 = 4t^2, \quad f(a(t), t) = (t^2)^2 = t^4 f(b(t),t)=(2t)2=4t2,f(a(t),t)=(t2)2=t4

代入:
d I ( t ) d t = 4 t 2 ⋅ 2 − t 4 ⋅ 2 t = 8 t 2 − 2 t 5 \frac{dI(t)}{dt} = 4t^2 \cdot 2 - t^4 \cdot 2t = 8t^2 - 2t^5 dtdI(t)=4t22t42t=8t22t5

最终结果:
d I ( t ) d t = 8 t 2 − 2 t 5 \frac{dI(t)}{dt} = 8t^2 - 2t^5 dtdI(t)=8t22t5


总结

莱布尼茨积分法则处理任意可变上下限和被积函数显式依赖时的导数问题,其核心是上下限的贡献和被积函数的显式导数相结合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值