在Black-Scholes期权定价模型中,不能直接观察到的参数只有股票价格的波动率。波动率可以由历史数据进行估计,这是历史波动率。隐含波动率也是交易员非常关心的,隐含波动率是期权的市场价格中所包含的波动率,即由期权价格和期权定价公式反推的波动率。隐含波动率和历史波动率作比较,可以指导投资者的操作。投资者可以直接买卖波动率,或者参考波动率确定买卖时机。
我们可以通过期权定价公式写出隐含波动率的方程,但是直接解方程非常困难,因为这个方程不存在闭合解。既然是用程序求解,当然可以用计算机求方程解的神器-数值计算。牛顿迭代法和二分法是求隐含波动率常用的两个方法。相比二分法,牛顿迭代法是更通用的近似求解方程的方法。
由于国内没有场内个股期权,曲曲菜用上证50ETF期权做分析。首先从新浪财经的网站获得期权的行情信息,并存入csv文件。到期时间我选了16天,51天,76天三种,分别存成三个文件。
新浪财经的期权行情数据(16天到期)
期权数据文件(16天到期)
然后就可以计算隐含波动率了,计算隐含波动率的python程序如下。
一.BSM模型
1.引入所用到的库
2. 定价公式的程序实现
二.牛顿迭代法
1.介绍
设r是f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)
的切线L &