python历史波动率_【BSM模型】用实际市场数据计算隐含波动率并验证波动率微笑...

本文介绍了如何使用Python计算期权的隐含波动率,通过Black-Scholes模型结合牛顿迭代法和二分法,分析上证50ETF期权数据。对比历史波动率,隐含波动率揭示了市场预期,波动率微笑现象表明了不同执行价格下的隐含波动率差异。文章提供了相关代码示例和数据来源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Black-Scholes期权定价模型中,不能直接观察到的参数只有股票价格的波动率。波动率可以由历史数据进行估计,这是历史波动率。隐含波动率也是交易员非常关心的,隐含波动率是期权的市场价格中所包含的波动率,即由期权价格和期权定价公式反推的波动率。隐含波动率和历史波动率作比较,可以指导投资者的操作。投资者可以直接买卖波动率,或者参考波动率确定买卖时机。

我们可以通过期权定价公式写出隐含波动率的方程,但是直接解方程非常困难,因为这个方程不存在闭合解。既然是用程序求解,当然可以用计算机求方程解的神器-数值计算。牛顿迭代法和二分法是求隐含波动率常用的两个方法。相比二分法,牛顿迭代法是更通用的近似求解方程的方法。

由于国内没有场内个股期权,曲曲菜用上证50ETF期权做分析。首先从新浪财经的网站获得期权的行情信息,并存入csv文件。到期时间我选了16天,51天,76天三种,分别存成三个文件。

e73f538859df

新浪财经的期权行情数据(16天到期)

e73f538859df

期权数据文件(16天到期)

然后就可以计算隐含波动率了,计算隐含波动率的python程序如下。

一.BSM模型

1.引入所用到的库

e73f538859df

2. 定价公式的程序实现

e73f538859df

二.牛顿迭代法

1.介绍

设r是f(x)=0的根,选取x0作为r的初始近似值,过点(x0,f(x0))做曲线y=f(x)

的切线L &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值