主干网络篇 | YOLOv5/v7 更换主干网络为 VGG13 / VGG16 / VGG19 | 对比实验必备

主干网络篇 | YOLOv5/v7 更换主干网络为 VGG13 / VGG16 / VGG19 | 对比实验必备

1. 简介

YOLOv5/v7 是目前流行的实时目标检测框架之一,它以其快速、准确的检测性能而著称。然而,YOLOv5/v7 的默认主干网络通常是轻量级的,例如 Darknet53 或 CSPDarknet53,这可能会导致模型精度略逊于其他更复杂的模型。

VGGNet 是一种经典的卷积神经网络架构,它以其深度和丰富的特征提取能力而闻名。VGG13、VGG16 和 VGG19 是 VGGNet 的三个变体,它们分别具有 13、16 和 19 个卷积层。

本文将介绍将 VGG13/VGG16/VGG19 作为主干网络替换 YOLOv5/v7 中原有骨干网络的方案,并探讨 VGGNet 的架构设计和原理。

2. 原理详解

VGGNet 的核心思想是通过堆叠多个 3x3 卷积层和 2x2 池化层来提取特征。每个卷积层后紧接着一个 BatchNorm 层和一个 ReLU 激活函数。池化层用于降低特征图的空间分辨率,同时提高特征图的抽象程度。

VGG13、VGG16 和 VGG19 的主要区别在于它们的卷积层数量和每个卷积块的通道数。VGG13 具有 8 个卷积块,每个卷积块的通道数分别为 64、128、256、512、512、512、512、512。VGG16 具有 13 个卷积块,前 8 个卷积块与 VGG13 相同,后 5 个卷积块的通道数分别为 512、512、512、1024、1024。VGG19 具有 16 个卷积块,前 13 个卷积块与 VGG16 相同,后 3 个卷积块的通道数分别为 512、512、4096。

3. 应用场景解释

将 VGG13/VGG16/VGG19 作为主干网络替换 YOLOv5/v7 中原有骨干网络具有以下优势:

  • 提高模型精度: VGGNet 的深度和丰富的特征提取能力可以显著提高模型的精度。
  • 扩展模型应用场景: VGGNet 可以应用于更复杂的场景,例如医学图像分析、遥感图像分析等。

4. 算法实现

将 VGG13/VGG16/VGG19 作为主干网络替换 YOLOv5/v7 中原有骨干网络的具体步骤如下:

  1. 选择 VGGNet 架构: 根据需求选择合适的 VGGNet 架构,例如 VGG13、VGG16 或 VGG19。
  2. 修改 YOLOv5/v7 代码: 修改 YOLOv5/v7 代码,将原有的骨干网络替换为 VGGNet 架构。
  3. 训练模型: 训练模型并评估其性能。

5. 完整代码实现

impo
### Res-UNet 模型架构详细说明 #### 基础 UNet 结构 Res-UNet 的基础是经典的 U-Net 架构,该架构由编码器路径解码器路径组成。编码器负责提取图像中的高层次特征,而解码器则通过逐步上采样来恢复空间分辨率并生成最终的分割图。 #### 编码器部分 编码器通常采用预训练的卷积神经网络(CNN),如 VGG 或 ResNet 作为骨干网络。每一层都包含多个卷积操作以及池化层用于下采样。这种设计有助于捕捉不同尺度下的语义信息[^4]。 ```python import torch.nn as nn class EncoderBlock(nn.Module): def __init__(self, in_channels, out_channels): super(EncoderBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) return self.pool(x), x ``` #### 解码器部分 解码器的任务是对来自编码器的信息进行重构,并逐渐提高输出的空间维度直至与输入一致。它利用跳跃连接将低级特征与高级抽象相结合,从而增强局部定位能力。此外,在某些版本中引入了残差模块以促进梯度传播。 ```python class DecoderBlock(nn.Module): def __init__(self, in_channels, mid_channels, out_channels): super(DecoderBlock, self).__init__() self.upconv = nn.ConvTranspose2d(in_channels, mid_channels, kernel_size=2, stride=2) self.conv1 = nn.Conv2d(mid_channels * 2, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x, skip_connection): x = self.upconv(x) x = torch.cat([skip_connection, x], dim=1) x = self.conv1(x) x = self.bn1(x) return self.relu(x) ``` #### 加权注意力机制 为了进一步提升模型的表现力,特别是在处理复杂背景的情况下,加入了加权注意机制。这一改进允许网络更加关注于那些对于分类至关重要的区域,进而改善整体性能。具体来说,权重被分配给每个像素位置上的响应值,以便突出显示目标对象及其边界[^1]。 ```python class AttentionGate(nn.Module): def __init__(self, F_g, F_l, F_int): super(AttentionGate, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1), nn.BatchNorm2d(F_int)) self.W_x = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1), nn.BatchNorm2d(F_int)) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1), nn.BatchNorm2d(1), nn.Sigmoid()) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.psi(torch.add(g1,x1)) return x * psi ``` #### 超参数调整 针对特定应用场景的需求,可以通过实验确定最佳配置方案。例如,在 Synapse 数据集的研究表明适当调节上采样的方式及优化算法的选择能够显著影响最终效果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值