主干网络篇 | YOLOv5/v7 更换主干网络为 VGG13 / VGG16 / VGG19 | 对比实验必备
1. 简介
YOLOv5/v7 是目前流行的实时目标检测框架之一,它以其快速、准确的检测性能而著称。然而,YOLOv5/v7 的默认主干网络通常是轻量级的,例如 Darknet53 或 CSPDarknet53,这可能会导致模型精度略逊于其他更复杂的模型。
VGGNet 是一种经典的卷积神经网络架构,它以其深度和丰富的特征提取能力而闻名。VGG13、VGG16 和 VGG19 是 VGGNet 的三个变体,它们分别具有 13、16 和 19 个卷积层。
本文将介绍将 VGG13/VGG16/VGG19 作为主干网络替换 YOLOv5/v7 中原有骨干网络的方案,并探讨 VGGNet 的架构设计和原理。
2. 原理详解
VGGNet 的核心思想是通过堆叠多个 3x3 卷积层和 2x2 池化层来提取特征。每个卷积层后紧接着一个 BatchNorm 层和一个 ReLU 激活函数。池化层用于降低特征图的空间分辨率,同时提高特征图的抽象程度。
VGG13、VGG16 和 VGG19 的主要区别在于它们的卷积层数量和每个卷积块的通道数。VGG13 具有 8 个卷积块,每个卷积块的通道数分别为 64、128、256、512、512、512、512、512。VGG16 具有 13 个卷积块,前 8 个卷积块与 VGG13 相同,后 5 个卷积块的通道数分别为 512、512、512、1024、1024。VGG19 具有 16 个卷积块,前 13 个卷积块与 VGG16 相同,后 3 个卷积块的通道数分别为 512、512、4096。
3. 应用场景解释
将 VGG13/VGG16/VGG19 作为主干网络替换 YOLOv5/v7 中原有骨干网络具有以下优势:
- 提高模型精度: VGGNet 的深度和丰富的特征提取能力可以显著提高模型的精度。
- 扩展模型应用场景: VGGNet 可以应用于更复杂的场景,例如医学图像分析、遥感图像分析等。
4. 算法实现
将 VGG13/VGG16/VGG19 作为主干网络替换 YOLOv5/v7 中原有骨干网络的具体步骤如下:
- 选择 VGGNet 架构: 根据需求选择合适的 VGGNet 架构,例如 VGG13、VGG16 或 VGG19。
- 修改 YOLOv5/v7 代码: 修改 YOLOv5/v7 代码,将原有的骨干网络替换为 VGGNet 架构。
- 训练模型: 训练模型并评估其性能。
5. 完整代码实现
impo