Second-hand car price prediction——模型结果融合

@(Aaron) [机器学习, 模型结果融合]

主要内容包括:

  • 简单加权融合:
    • 回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
    • 分类:投票(Voting)
    • 综合:排序融合(Rank averaging),log融合
  • stacking/blending:
    • 构建多层模型,并利用预测结果再拟合预测。
  • boosting/bagging(在xgboost,Adaboost,GBDT中已经用到)::
    • 多树的提升方法

1 Stacking相关理论介绍

1) 什么是 stacking

简单来说 stacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。
在这里插入图片描述
将个体学习器结合在一起的时候使用的方法叫做结合策略。对于分类问题,我们可以使用投票法来选择输出最多的类。对于回归问题,我们可以将分类器输出的结果求平均值。

上面说的投票法和平均法都是很有效的结合策略,还有一种结合策略是使用另外一个机器学习算法来将个体机器学习器的结果结合在一起,这个方法就是Stacking。

在stacking方法中,我们把个体学习器叫做初级学习器,用于结合的学习器叫做次级学习器或元学习器(meta-learner),次级学习器用于训练的数据叫做次级训练集。次级训练集是在训练集上用初级学习器得到的。

2) 如何进行 stacking

算法示意图如下:

引用自 西瓜书《机器学习》

  • 过程1-3 是训练出来个体学习器,也就是初级学习器。
  • 过程5-9是 使用训练出来的个体学习器来得预测的结果,这个预测的结果当做次级学习器的训练集。
  • 过程11 是用初级学习器预测的结果训练出次级学习器,得到我们最后训练的模型。

3)Stacking的方法讲解

首先,我们先从一种“不那么正确”但是容易懂的Stacking方法讲起。

Stacking模型本质上是一种分层的结构,这里简单起见,只分析二级Stacking.假设我们有2个基模型 Model1_1、Model1_2 和 一个次级模型Model2

Step 1. 基模型 Model1_1,对训练集train训练,然后用于预测 train 和 test 的标签列,分别是P1,T1

Model1_1 模型训练:
( ⋮ X train ⋮ ) ⟹  Modell 1 Train  ( ⋮ Y True ⋮ ) \left(\begin{array}{c} \vdots \\ X_{\text {train}} \\ \vdots \end{array}\right) \stackrel{\text { Modell 1 Train }}{\Longrightarrow}\left(\begin{array}{c} \vdots \\ Y_{\text {True}} \\ \vdots \end{array}\right) Xtrain Modell 1 Train YTrue
训练后的模型 Model1_1 分别在 train 和 test 上预测,得到预测标签分别是P1,T1

( ⋮ X train ⋮ ) ⟹  Model  1  1 Predict  ( ⋮ P 1 ⋮ ) \left(\begin{array}{c} \vdots \\ X_{\text {train}} \\ \vdots \end{array}\right) \stackrel{\text { Model } 1 \text { 1 Predict }}{\Longrightarrow}\left(\begin{array}{c} \vdots \\ P_{1} \\ \vdots \end{array}\right) Xtrain Model 1 1 Predict P1

( ⋮ X test ⋮ ) ⟹  Modell 1 Predict  ( ⋮ T 1 ⋮ ) \left(\begin{array}{c} \vdots \\ X_{\text {test}} \\ \vdots \end{array}\right) \stackrel{\text { Modell 1 Predict }}{\Longrightarrow}\left(\begin{array}{c} \vdots \\ T_{1} \\ \vdots \end{array}\right) Xtest Modell 1 Predict T1

Step 2. 基模型 Model1_2 ,对训练集train训练,然后用于预测train和test的标签列,分别是P2,T2

Model1_2 模型训练:

( ⋮ X train ⋮ ) ⟹  Modell 2  Train ⁡ ( ⋮ Y True ⋮ ) \left(\begin{array}{c} \vdots \\ X_{\text {train}} \\ \vdots \end{array}\right) \stackrel{\text { Modell 2 } \operatorname{Train}}{\Longrightarrow}\left(\begin{array}{c} \vdots \\ Y_{\text {True}} \\ \vdots \end{array}\right) Xtrain Modell 2 TrainYTrue

训练后的模型 Model1_2 分别在 train 和 test 上预测,得到预测标签分别是P2,T2

( ⋮ X train ⋮ ) ⟹  Modell 2Predict  ( ⋮ P 2 ⋮ ) ( ⋮ X test ⋮ ) ⟹  Modell  2  Predict  ( ⋮ T 2 ⋮ ) \begin{aligned} &\left(\begin{array}{c} \vdots \\ X_{\text {train}} \\ \vdots \end{array}\right) \stackrel{\text { Modell 2Predict }}{\Longrightarrow}\left(\begin{array}{c} \vdots \\ P_{2} \\ \vdots \end{array}\right)\\ &\left(\begin{array}{c} \vdots \\ X_{\text {test}} \\ \vdots \end{array}\right) \stackrel{\text { Modell } 2 \text { Predict }}{\Longrightarrow}\left(\begin{array}{c} \vdots \\ T_{2} \\ \vdots \end{array}\right) \end{aligned} Xtrain Modell 2Predict P2Xtest Modell 2 Predict T2

Step 3. 分别把P1,P2以及T1,T2合并,得到一个新的训练集和测试集train2,test2.
T r a i n 2 T e s t 2 Train2 \qquad\qquad Test2 Train2Test2
( ⋮ ⋮ P 1 P 2 ⋮ ⋮ ) and ⁡ ( ⋮ ⋮ T 1 T 2 ⋮ ⋮ ) \left(\begin{array}{cc} \vdots & \vdots \\ P_{1} & P_{2} \\ \vdots & \vdots \end{array}\right) \operatorname{and}\left(\begin{array}{cc} \vdots & \vdots \\ T_{1} & T_{2} \\ \vdots & \vdots \end{array}\right) P1P2andT1T2

再用 次级模型 Model2 以真实训练集标签为标签训练,以train2为特征进行训练,预测test2,得到最终的测试集预测的标签列 Y P r e Y_{Pre} YPre

在这里插入图片描述

这就是我们两层堆叠的一种基本的原始思路想法。在不同模型预测的结果基础上再加一层模型,进行再训练,从而得到模型最终的预测。

Stacking本质上就是这么直接的思路,但是直接这样有时对于如果训练集和测试集分布不那么一致的情况下是有一点问题的,其问题在于用初始模型训练的标签再利用真实标签进行再训练,毫无疑问会导致一定的模型过拟合训练集,这样或许模型在测试集上的泛化能力或者说效果会有一定的下降,因此现在的问题变成了如何降低再训练的过拟合性,这里我们一般有两种方法。

    1. 次级模型尽量选择简单的线性模型
    1. 利用K折交叉验证

K-折交叉验证:
训练:

预测:

2 代码示例

2.1 回归\分类概率-融合:

1)简单加权平均,结果直接融合
## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 
import numpy as np
import pandas as pd

## 定义结果的加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result
from sklearn import metrics
# 各模型的预测结果计算MAE
print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))
Pred1 MAE: 0.175
Pred2 MAE: 0.075
Pred3 MAE: 0.1
## 根据加权计算MAE
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))

可以发现加权结果相对于之前的结果是有提升的,这种我们称其为简单的加权平均。

还有一些特殊的形式,比如mean平均,median平均

## 定义结果的加权平均函数
def Mean_method(test_pre1,test_pre2,test_pre3):
    Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).mean(axis=1)
    return Mean_result
Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)
print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))
Mean_pre MAE: 0.0666666666667
## 定义结果的加权平均函数
def Median_method(test_pre1,test_pre2,test_pre3):
    Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).median(axis=1)
    return Median_result
Median_pre = Median_method(test_pre1,test_pre2,test_pre3)
print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))
Median_pre MAE: 0.075
2) Stacking融合(回归):
from sklearn import linear_model

def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2= linear_model.LinearRegression()):
    model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=1).values,y_train_true)
    Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)
    return Stacking_result
## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1, 5.2]
train_reg2 = [2.9, 8.1, 9.0, 4.9]
train_reg3 = [3.1, 7.9, 9.2, 5.0]
# y_test_true 代表第模型的真实值
y_train_true = [3, 8, 9, 5] 

test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 
model_L2= linear_model.LinearRegression()
Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,
                               test_pre1,test_pre2,test_pre3,model_L2)
print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))
Stacking_pre MAE: 0.0421348314607

可以发现模型结果相对于之前有进一步的提升,这是我们需要注意的一点是,对于第二层Stacking的模型不宜选取的过于复杂,这样会导致模型在训练集上过拟合,从而使得在测试集上并不能达到很好的效果。

2.2 分类模型融合:

对于分类,同样的可以使用融合方法,比如简单投票,Stacking…

from sklearn.datasets import make_blobs
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_moons
from sklearn.metrics import accuracy_score,roc_auc_score
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import StratifiedKFold
1)Voting投票机制:

Voting即投票机制,分为软投票和硬投票两种,其原理采用少数服从多数的思想。

'''
硬投票:对多个模型直接进行投票,不区分模型结果的相对重要度,最终投票数最多的类为最终被预测的类。
'''
iris = datasets.load_iris()

x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.7,
                     colsample_bytree=0.6, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
                              min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1)

# 硬投票
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
    scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
Accuracy: 0.97 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.95 (+/- 0.03) [SVM]
Accuracy: 0.94 (+/- 0.04) [Ensemble]
'''
软投票:和硬投票原理相同,增加了设置权重的功能,可以为不同模型设置不同权重,进而区别模型不同的重要度。
'''
x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.8,
                     colsample_bytree=0.8, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
                              min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1, probability=True)

# 软投票
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 1])
clf1.fit(x_train, y_train)

for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
    scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
Accuracy: 0.96 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.95 (+/- 0.03) [SVM]
Accuracy: 0.96 (+/- 0.02) [Ensemble]
2)分类的Stacking\Blending融合:

stacking是一种分层模型集成框架。

以两层为例,第一层由多个基学习器组成,其输入为原始训练集,第二层的模型则是以第一层基学习器的输出作为训练集进行再训练,从而得到完整的stacking模型, stacking两层模型都使用了全部的训练数据。

'''
5-Fold Stacking
'''
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier,GradientBoostingClassifier
import pandas as pd
#创建训练的数据集
data_0 = iris.data
data = data_0[:100,:]

target_0 = iris.target
target = target_0[:100]

#模型融合中使用到的各个单模型
clfs = [LogisticRegression(solver='lbfgs'),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]
 
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)

dataset_blend_train = np.zeros((X.shape[0], len(clfs)))
dataset_blend_test = np.zeros((X_predict.shape[0], len(clfs)))

#5折stacking
n_splits = 5
skf = StratifiedKFold(n_splits)
skf = skf.split(X, y)

for j, clf in enumerate(clfs):
    #依次训练各个单模型
    dataset_blend_test_j = np.zeros((X_predict.shape[0], 5))
    for i, (train, test) in enumerate(skf):
        #5-Fold交叉训练,使用第i个部分作为预测,剩余的部分来训练模型,获得其预测的输出作为第i部分的新特征。
        X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]
        clf.fit(X_train, y_train)
        y_submission = clf.predict_proba(X_test)[:, 1]
        dataset_blend_train[test, j] = y_submission
        dataset_blend_test_j[:, i] = clf.predict_proba(X_predict)[:, 1]
    #对于测试集,直接用这k个模型的预测值均值作为新的特征。
    dataset_blend_test[:, j] = dataset_blend_test_j.mean(1)
    print("val auc Score: %f" % roc_auc_score(y_predict, dataset_blend_test[:, j]))

clf = LogisticRegression(solver='lbfgs')
clf.fit(dataset_blend_train, y)
y_submission = clf.predict_proba(dataset_blend_test)[:, 1]

print("Val auc Score of Stacking: %f" % (roc_auc_score(y_predict, y_submission)))
val auc Score: 1.000000
val auc Score: 0.500000
val auc Score: 0.500000
val auc Score: 0.500000
val auc Score: 0.500000
Val auc Score of Stacking: 1.000000

Blending,其实和Stacking是一种类似的多层模型融合的形式

其主要思路是把原始的训练集先分成两部分,比如70%的数据作为新的训练集,剩下30%的数据作为测试集。

在第一层,我们在这70%的数据上训练多个模型,然后去预测那30%数据的label,同时也预测test集的label。

在第二层,我们就直接用这30%数据在第一层预测的结果做为新特征继续训练,然后用test集第一层预测的label做特征,用第二层训练的模型做进一步预测

其优点在于:

  • 1.比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)
  • 2.避开了一个信息泄露问题:generlizers和stacker使用了不一样的数据集

缺点在于:

  • 1.使用了很少的数据(第二阶段的blender只使用training set10%的量)
  • 2.blender可能会过拟合
  • 3.stacking使用多次的交叉验证会比较稳健
'''
Blending
'''
 
#创建训练的数据集
#创建训练的数据集
data_0 = iris.data
data = data_0[:100,:]

target_0 = iris.target
target = target_0[:100]
 
#模型融合中使用到的各个单模型
clfs = [LogisticRegression(solver='lbfgs'),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        #ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]
 
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)

#切分训练数据集为d1,d2两部分
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=2020)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))
 
for j, clf in enumerate(clfs):
    #依次训练各个单模型
    clf.fit(X_d1, y_d1)
    y_submission = clf.predict_proba(X_d2)[:, 1]
    dataset_d1[:, j] = y_submission
    #对于测试集,直接用这k个模型的预测值作为新的特征。
    dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
    print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))

#融合使用的模型
clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
clf.fit(dataset_d1, y_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
Val auc Score of Blending: 1.000000

参考博客:https://blog.csdn.net/Noob_daniel/article/details/76087829

3)分类的Stacking融合(利用mlxtend):
!pip install mlxtend

import warnings
warnings.filterwarnings('ignore')
import itertools
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB 
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier

from sklearn.model_selection import cross_val_score
from mlxtend.plotting import plot_learning_curves
from mlxtend.plotting import plot_decision_regions

# 以python自带的鸢尾花数据集为例
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target

clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], 
                          meta_classifier=lr)

label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]

fig = plt.figure(figsize=(10,8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0,1],repeat=2)

clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):
        
    scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')
    print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))
    clf_cv_mean.append(scores.mean())
    clf_cv_std.append(scores.std())
        
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf)
    plt.title(label)

plt.show()

可以发现 基模型 用 ‘KNN’, ‘Random Forest’, ‘Naive Bayes’ 然后再这基础上 次级模型加一个 ‘LogisticRegression’,模型测试效果有着很好的提升。

2.3 一些其它方法:

将特征放进模型中预测,并将预测结果变换并作为新的特征加入原有特征中再经过模型预测结果 (Stacking变化)

(可以反复预测多次将结果加入最后的特征中)

def Ensemble_add_feature(train,test,target,clfs):
    
    # n_flods = 5
    # skf = list(StratifiedKFold(y, n_folds=n_flods))

    train_ = np.zeros((train.shape[0],len(clfs*2)))
    test_ = np.zeros((test.shape[0],len(clfs*2)))

    for j,clf in enumerate(clfs):
        '''依次训练各个单模型'''
        # print(j, clf)
        '''使用第1个部分作为预测,第2部分来训练模型,获得其预测的输出作为第2部分的新特征。'''
        # X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]

        clf.fit(train,target)
        y_train = clf.predict(train)
        y_test = clf.predict(test)

        ## 新特征生成
        train_[:,j*2] = y_train**2
        test_[:,j*2] = y_test**2
        train_[:, j+1] = np.exp(y_train)
        test_[:, j+1] = np.exp(y_test)
        # print("val auc Score: %f" % r2_score(y_predict, dataset_d2[:, j]))
        print('Method ',j)
    
    train_ = pd.DataFrame(train_)
    test_ = pd.DataFrame(test_)
    return train_,test_
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()

data_0 = iris.data
data = data_0[:100,:]

target_0 = iris.target
target = target_0[:100]

x_train,x_test,y_train,y_test=train_test_split(data,target,test_size=0.3)
x_train = pd.DataFrame(x_train) ; x_test = pd.DataFrame(x_test)

#模型融合中使用到的各个单模型
clfs = [LogisticRegression(),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]

New_train,New_test = Ensemble_add_feature(x_train,x_test,y_train,clfs)

clf = LogisticRegression()
# clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
clf.fit(New_train, y_train)
y_emb = clf.predict_proba(New_test)[:, 1]

print("Val auc Score of stacking: %f" % (roc_auc_score(y_test, y_emb)))
Method  0
Method  1
Method  2
Method  3
Method  4
Val auc Score of stacking: 1.000000

经验总结

比赛的融合这个问题,个人的看法来说其实涉及多个层面,也是提分和提升模型鲁棒性的一种重要方法:

  • 1)结果层面的融合,这种是最常见的融合方法,其可行的融合方法也有很多,比如根据结果的得分进行加权融合,还可以做Log,exp处理等。在做结果融合的时候,有一个很重要的条件是模型结果的得分要比较近似,然后结果的差异要比较大,这样的结果融合往往有比较好的效果提升。

  • 2)特征层面的融合,这个层面其实感觉不叫融合,准确说可以叫分割,很多时候如果我们用同种模型训练,可以把特征进行切分给不同的模型,然后在后面进行模型或者结果融合有时也能产生比较好的效果。

  • 3)模型层面的融合,模型层面的融合可能就涉及模型的堆叠和设计,比如加Staking层,部分模型的结果作为特征输入等,这些就需要多实验和思考了,基于模型层面的融合最好不同模型类型要有一定的差异,用同种模型不同的参数的收益一般是比较小的。

### 回答1: ARIMA-RNN联合模型是一种用于股票价格预测的方法。ARIMA模型是一种时间序列预测模型,它可以捕捉到数据中的趋势、周期性和季节性。而RNN模型则是一种神经网络模型,能够处理具有长期依赖性的序列数据。 ARIMA-RNN联合模型的基本思想是将ARIMA模型和RNN模型相结合,以提高预测的准确性和稳定性。首先,使用ARIMA模型对股票价格时间序列进行拟合,得到ARIMA模型的参数。然后,将这些参数输入到RNN模型中,进行进一步的序列预测。 ARIMA模型能够捕捉到一些市场中的周期性和趋势性,但在处理非线性和复杂的情况时可能会有限制。这时候RNN模型的引入可以有效地提高预测的精度。RNN模型可以学习到更复杂的、非线性的关系,并且能够处理长期的依赖关系。 因此,ARIMA-RNN联合模型综合了ARIMA模型和RNN模型的优点,能够更好地预测股票价格。通过使用ARIMA模型的参数,RNN模型可以捕捉到更大范围内的时间依赖性和非线性关系,以提高预测的准确性。这种结合不仅能够更好地利用时间序列数据的特征,还能够应对数据的复杂性。 当然,ARIMA-RNN联合模型也有一些局限性。例如,对于由于外部因素引起的异常情况,模型可能会表现出较差的预测能力。另外,模型的参数选择和训练也会对预测结果产生影响。因此,在使用该模型时需要谨慎选择参数,并进行合理的模型训练和验证。 总而言之,ARIMA-RNN联合模型是一种能够更好地预测股票价格的方法。通过结合ARIMA模型和RNN模型的优势,可以提高预测的准确性和稳定性。但在实际应用中还需要考虑到模型的局限性,并进行合理的参数选择和模型训练。 ### 回答2: 基于ARIMA-RNN组合模型的股票价格预测是一种结合了ARIMA模型和循环神经网络(RNN)模型的方法。ARIMA模型是一种基于时间序列的预测模型,可以捕捉股票价格的长期趋势和季节性变化。而RNN模型则能够处理序列数据中的时间依赖性,并能捕捉到更复杂的模式和关联性。 ARIMA-RNN组合模型的一般做法是首先使用ARIMA模型对股票价格进行预测,得到一个基本的趋势线。然后将ARIMA预测的残差序列输入到RNN模型中,让RNN模型学习到这些残差序列中更加细微的关联性和模式,从而进一步提高预测的准确性。 ARIMA-RNN组合模型的优势在于能够综合利用ARIMA模型和RNN模型各自的优点,以及解决各自的问题。ARIMA模型适用于对长期趋势和季节性变化进行建模,而RNN模型适用于捕捉更加复杂的模式和关联性。因此,通过将两个模型组合起来,可以提高股票价格预测的准确性和稳定性。 ARIMA-RNN组合模型虽然较为复杂,但可以通过合理地设置模型参数和优化算法来提高预测性能。此外,还可以通过引入其他辅助信息(如技术指标、市场情绪等)来进一步改进模型。 总之,基于ARIMA-RNN组合模型的股票价格预测方法能够融合ARIMA模型和RNN模型的优势,提高预测的准确性和稳定性,对于投资者和金融机构进行股票交易决策提供了有价值的参考。 ### 回答3: ARIMA-RNN联合模型是一种用于股票价格预测的方法。ARIMA模型是一种传统的时间序列分析方法,用于捕捉时间序列数据中的趋势和周期性。RNN(循环神经网络)是一种特殊的神经网络,能够捕获数据中的长期依赖关系。 ARIMA模型首先对时间序列数据进行分析,确定最佳的自回归(AR)和移动平均(MA)参数。然后,基于这些参数,ARIMA模型可以生成一系列未来的预测值。 然而,ARIMA模型通常难以捕捉到时间序列数据中的非线性特征。这就是为什么我们需要引入RNN模型。RNN模型能够处理时间序列中复杂的依赖关系,通过记忆先前的信息来影响后续的预测结果。 ARIMA-RNN联合模型的关键思想是将ARIMA模型的预测结果作为RNN模型的输入特征。具体来说,ARIMA模型预测的未来时间步的数值被用作RNN模型的输入,以便更准确地捕捉时间序列中的非线性特征。 通过结合ARIMA和RNN模型,我们可以充分利用ARIMA模型的趋势和周期性分析能力,同时也能捕捉到RNN模型所擅长的长期依赖关系。这种联合模型能够更好地预测股票价格的未来趋势和波动。 综上所述,ARIMA-RNN联合模型是一种用于股票价格预测的方法,通过将ARIMA模型的预测结果作为RNN模型的输入特征,能够更好地捕捉时间序列数据中的趋势、周期性和长期依赖关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值