answer 1
MahalanobisDistance is expecting a parameter V which is the covariance matrix, and optionally another parameter VI which is the inverse of the covariance matrix. Furthermore, both of these parameters are named and not positional.
Also check the docstring for the class MahalanobisDistance in the file scikit-learn/sklearn/neighbors/dist_metrics.pyx in the sklearn repo.
Example:
In [18]: import numpy as np
In [19]: from sklearn.datasets import make_classification
In [20]: from sklearn.neighbors import DistanceMetric
In [21]: X, y = make_classification()
In [22]: DistanceMetric.get_metric('mahalanobis', V=np.cov(X))
Out[22]:
Edit:
For some reasons (bug?), you can't pass the distance object to the NearestNeighbor constructor, but need to use the name of the distance metric. Also, setting algorithm='auto' (which defaults to 'ball_tree') doesn't seem to work; so given X from the code above you can do:
In [23]: nn = NearestNeighbors(algorithm='brute',
metric='mahalanobis',
metric_params={'V': np.cov(X)})
# returns the 5 nearest neighbors of that sample
In [24]: nn.fit(X).kneighbors(X[0, :])
Out[24]: (array([[ 0., 3.21120892, 3.81840748, 4.18195987, 4.21977517]]),
array([[ 0, 36, 46, 5, 17]]))