永磁同步电机无感控制论文学习(Yongsoon Park2014)

论文:Sensorless Control Method for PMSM Based on Frequency-Adaptive Disturbance Observer

主要观点

  1. 采用定子电压和定子电流根据电压模型以积分方式获取定子磁链时,由于误差扰动电压,易导致电压积分误差,从而引起磁链角度估计偏差。采用频率自适应的扰动观测器可以移除扰动电压对转子磁链角度估计的影响。
  2. 高频注入的主要缺点:音频噪声;额外损耗;对电机凸极性有要求;
  3. 反电势法在极低频下由于反电势很小,受干扰影响严重;
  4. 永磁同步电机磁链观测的电压模型和电流模型如下:
    在这里插入图片描述
  5. 采用了虚拟磁链的思想,建立定子磁链和虚拟磁链的关系。从而可以通过定子电压方程实现虚拟磁链的定向,实现转子位置的观测。
  6. 对扰动模型的理解:
    d d t [ ψ α 1 ψ β 1 D α D β ] = [ 0 − ω f 0 ω f ω f 0 − ω f 0 0 0 0 0 0 0 0 0 ] [ ψ α 1 ψ β 1 D α D β ] [ ψ α 1 ψ β 1 ] = [ 1 0 0 0 0 1 0 0 ] [ ψ α 1 ψ β 1 D α D β ] \frac{d}{dt}\left[ \begin{array}{c} \psi _{\alpha 1}\\ \psi _{\beta 1}\\ D_{\alpha}\\ D_{\beta}\\ \end{array} \right] =\left[ \begin{matrix} 0& -\omega _f& 0& \omega _f\\ \omega _f& 0& -\omega _f& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \psi _{\alpha 1}\\ \psi _{\beta 1}\\ D_{\alpha}\\ D_{\beta}\\ \end{array} \right] \\ \left[ \begin{array}{c} \psi _{\alpha 1}\\ \psi _{\beta 1}\\ \end{array} \right] =\left[ \begin{matrix} 1& 0& 0& 0\\ 0& 1& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} \psi _{\alpha 1}\\ \psi _{\beta 1}\\ D_{\alpha}\\ D_{\beta}\\ \end{array} \right] dtdψα1ψβ1DαDβ=0ωf00ωf0000ωf00ωf000ψα1ψβ1DαDβ[ψα1ψβ1]=[10010000]ψα1ψβ1DαDβ
    ψ α 1 \psi _{\alpha 1} ψα1的变化率与两个状态有关,分别是 ψ β 1 \psi _{\beta 1} ψβ1 D β D_{\beta} Dβ
    计算特征值和特征向量: ∣ λ ω f 0 − ω f − ω f λ ω f 0 0 0 λ 0 0 0 0 λ ∣ = 0 对上述行列式化简为行阶梯型: ∣ λ ω f 0 − ω f − ω f λ ω f 0 0 0 λ 0 0 0 0 λ ∣ → r 2 + ω f λ r 1 ∣ λ ω f 0 − ω f 0 λ + ω f 2 λ ω f − ω f 2 λ 0 0 λ 0 0 0 0 λ ∣ λ 3 ( λ + ω f 2 λ ) = 0 ( 上三角方阵的行列式是对角线元素的乘积 ) λ 1 = 0 ; λ + ω f 2 λ = 0 ⇒ λ 2 = j ω f ; λ 3 = − j ω f 计算特征向量: 根据: [ 0 − ω f 0 ω f ω f 0 − ω f 0 0 0 0 0 0 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = j ω f [ x 1 x 2 x 3 x 4 ] 计算得到特征向量为: { − ω f x 2 + ω f x 4 = j ω f x 1 ω f x 1 − ω f x 3 = j ω f x 2 0 = j ω f x 3 0 = j ω f x 4 ⇒ { − x 2 = j x 1 x 1 = j x 2 0 = x 3 0 = x 4 ⇒ [ x 1 x 2 x 3 x 4 ] = [ 1 − j 0 0 ] 根据 [ 0 − ω f 0 ω f ω f 0 − ω f 0 0 0 0 0 0 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = − j ω f [ x 1 x 2 x 3 x 4 ] 计算得到特征向量: { − ω f x 2 + ω f x 4 = − j ω f x 1 ω f x 1 − ω f x 3 = − j ω f x 2 0 = − j ω f x 3 0 = − j ω f x 4 ⇒ { x 2 = j x 1 x 1 = − j x 2 0 = x 3 0 = x 4 ⇒ [ x 1 x 2 x 3 x 4 ] = [ 1 j 0 0 ] 根据 [ 0 − ω f 0 ω f ω f 0 − ω f 0 0 0 0 0 0 0 0 0 ] [ x 1 x 2 x 3 x 4 ] = 0 [ x 1 x 2 x 3 x 4 ] 计算得到特征向量: { − ω f x 2 + ω f x 4 = 0 ω f x 1 − ω f x 3 = 0 0 = 0 0 = 0 ⇒ { x 2 = x 4 x 1 = x 3 0 = x 3 0 = x 4 ⇒ [ x 1 x 2 x 3 x 4 ] = [ 1 0 1 0 ] , [ x 1 x 2 x 3 x 4 ] = [ 0 1 0 1 ] 因此特征向量构成的矩阵: T = [ 1 1 1 0 − j j 0 1 0 0 1 0 0 0 0 1 ] 计算该矩阵的逆矩阵: T − 1 = [ 0.5 0.5 i − 0.5 − 0.5 i 0.5 − 0.5 i − 0.5 0.5 i 0 0 1 0 0 0 0 1 ] 因此可将原始矩阵化简为对角型矩阵: T − 1 [ 0 − ω f 0 ω f ω f 0 − ω f 0 0 0 0 0 0 0 0 0 ] T = [ ω f 0 0 0 0 − ω f 0 0 0 0 0 0 0 0 0 0 ] 设存在可逆矩阵 T , 可将原始的状态变量转化为 x ′ :即 x ′ = T − 1 x , x = T x ′ T x ′ = A T x ′ ⇒ x ′ = T − 1 A T x ′ T − 1 A T = [ ω f 0 0 0 0 − ω f 0 0 0 0 0 0 0 0 0 0 ] 因此 x ˙ 1 ′ = ω f x 1 ′ , x ˙ 2 ′ = − ω f x 2 ′ 原始的状态变量:根据 x = T x ′ 计算可得: x = [ 1 1 1 0 − j j 0 1 0 0 1 0 0 0 0 1 ] [ x 1 ′ x 2 ′ x 3 ′ x 4 ′ ] = [ x 1 ′ + x 2 ′ + x 3 ′ − j x 1 ′ + j x 2 ′ + x 4 ′ x 3 ′ x 4 ′ ] \text{计算特征值和特征向量:} \\ \left| \begin{matrix} \lambda& \omega _f& 0& -\omega _f\\ -\omega _f& \lambda& \omega _f& 0\\ 0& 0& \lambda& 0\\ 0& 0& 0& \lambda\\ \end{matrix} \right|=0 \\ \text{对上述行列式化简为行阶梯型:} \\ \left| \begin{matrix} \lambda& \omega _f& 0& -\omega _f\\ -\omega _f& \lambda& \omega _f& 0\\ 0& 0& \lambda& 0\\ 0& 0& 0& \lambda\\ \end{matrix} \right|\xrightarrow{r_2+\frac{\omega _f}{\lambda}r_1}\left| \begin{matrix} \lambda& \omega _f& 0& -\omega _f\\ 0& \lambda +\frac{\omega _{f}^{2}}{\lambda}& \omega _f& -\frac{\omega _{f}^{2}}{\lambda}\\ 0& 0& \lambda& 0\\ 0& 0& 0& \lambda\\ \end{matrix} \right| \\ \lambda ^3\left( \lambda +\frac{\omega _{f}^{2}}{\lambda} \right) =0\left( \text{上三角方阵的行列式是对角线元素的乘积} \right) \\ \lambda _1=0\text{;} \\ \lambda +\frac{\omega _{f}^{2}}{\lambda}=0\Rightarrow \lambda _2=j\omega _f;\lambda _3=-j\omega _f \\ \text{计算特征向量:} \\ \text{根据:}\left[ \begin{matrix} 0& -\omega _f& 0& \omega _f\\ \omega _f& 0& -\omega _f& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] =j\omega _f\left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] \\ \text{计算得到特征向量为:} \\ \begin{cases} -\omega _fx_2+\omega _fx_4=j\omega _fx_1\\ \omega _fx_1-\omega _fx_3=j\omega _fx_2\\ 0=j\omega _fx_3\\ 0=j\omega _fx_4\\ \end{cases}\Rightarrow \begin{cases} -x_2=jx_1\\ x_1=jx_2\\ 0=x_3\\ 0=x_4\\ \end{cases}\Rightarrow \left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] =\left[ \begin{array}{c} 1\\ -j\\ 0\\ 0\\ \end{array} \right] \\ \text{根据}\left[ \begin{matrix} 0& -\omega _f& 0& \omega _f\\ \omega _f& 0& -\omega _f& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] =-j\omega _f\left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] \\ \text{计算得到特征向量:} \\ \begin{cases} -\omega _fx_2+\omega _fx_4=-j\omega _fx_1\\ \omega _fx_1-\omega _fx_3=-j\omega _fx_2\\ 0=-j\omega _fx_3\\ 0=-j\omega _fx_4\\ \end{cases}\Rightarrow \begin{cases} x_2=jx_1\\ x_1=-jx_2\\ 0=x_3\\ 0=x_4\\ \end{cases}\Rightarrow \left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] =\left[ \begin{array}{c} 1\\ j\\ 0\\ 0\\ \end{array} \right] \\ \text{根据}\left[ \begin{matrix} 0& -\omega _f& 0& \omega _f\\ \omega _f& 0& -\omega _f& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] =0\left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] \\ \text{计算得到特征向量:} \\ \begin{cases} -\omega _fx_2+\omega _fx_4=0\\ \omega _fx_1-\omega _fx_3=0\\ 0=0\\ 0=0\\ \end{cases}\Rightarrow \begin{cases} x_2=x_4\\ x_1=x_3\\ 0=x_3\\ 0=x_4\\ \end{cases}\Rightarrow \left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] =\left[ \begin{array}{c} 1\\ 0\\ 1\\ 0\\ \end{array} \right] \text{,}\left[ \begin{array}{c} x1\\ x2\\ x3\\ x4\\ \end{array} \right] =\left[ \begin{array}{c} 0\\ 1\\ 0\\ 1\\ \end{array} \right] \\ \text{因此特征向量构成的矩阵:} \\ T=\left[ \begin{matrix} 1& 1& 1& 0\\ -j& j& 0& 1\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ \end{matrix} \right] \text{计算该矩阵的逆矩阵:} \\ T^{-1}=\left[ \begin{matrix} 0.5& 0.5i& -0.5& -0.5i\\ 0.5& -0.5i& -0.5& 0.5i\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ \end{matrix} \right] \\ \text{因此可将原始矩阵化简为对角型矩阵:} \\ T^{-1}\left[ \begin{matrix} 0& -\omega _f& 0& \omega _f\\ \omega _f& 0& -\omega _f& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ \end{matrix} \right] T=\left[ \begin{matrix} \omega _f& 0& 0& 0\\ 0& -\omega _f& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ \end{matrix} \right] \\ \text{设存在可逆矩阵}T,\text{可将原始的状态变量转化为}x^{'}\text{:即}x^{'}=T^{-1}x\text{,}x=Tx^{'} \\ Tx^{'}=ATx^{'}\Rightarrow x^{'}=T^{-1}ATx^{'} \\ T^{-1}AT=\left[ \begin{matrix} \omega _f& 0& 0& 0\\ 0& -\omega _f& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ \end{matrix} \right] \\ \text{因此}{\dot{x}_1}^{'}=\omega _f{x_1}^{'}\text{,}{\dot{x}_2}^{'}=-\omega _f{x_2}^{'} \\ \text{原始的状态变量:根据}x=Tx^{'}\text{计算可得:} \\ x=\left[ \begin{matrix} 1& 1& 1& 0\\ -j& j& 0& 1\\ 0& 0& 1& 0\\ 0& 0& 0& 1\\ \end{matrix} \right] \left[ \begin{array}{c} x_{1}^{'}\\ x_{2}^{'}\\ x_{3}^{'}\\ x_{4}^{'}\\ \end{array} \right] =\left[ \begin{array}{c} x_{1}^{'}+x_{2}^{'}+x_{3}^{'}\\ -jx_{1}^{'}+jx_{2}^{'}+x_{4}^{'}\\ x_{3}^{'}\\ x_{4}^{'}\\ \end{array} \right] 计算特征值和特征向量:λωf00ωfλ000ωfλ0ωf00λ=0对上述行列式化简为行阶梯型:λωf00ωfλ000ωfλ0ωf00λr2+λωfr1 λ000ωfλ+λωf2000ωfλ0ωfλωf20λλ3(λ+λωf2)=0(上三角方阵的行列式是对角线元素的乘积)λ1=0λ+λωf2=0λ2=jωf;λ3=jωf计算特征向量:根据:0ωf00ωf0000ωf00ωf000x1x2x3x4=jωfx1x2x3x4计算得到特征向量为:ωfx2+ωfx4=jωfx1ωfx1ωfx3=jωfx20=jωfx30=jωfx4x2=jx1x1=jx20=x30=x4x1x2x3x4=1j00根据0ωf00ωf0000ωf00ωf000x1x2x3x4=jωfx1x2x3x4计算得到特征向量:ωfx2+ωfx4=jωfx1ωfx1ωfx3=jωfx20=jωfx30=jωfx4x2=jx1x1=jx20=x30=x4x1x2x3x4=1j00根据0ωf00ωf0000ωf00ωf000x1x2x3x4=0x1x2x3x4计算得到特征向量:ωfx2+ωfx4=0ωfx1ωfx3=00=00=0x2=x4x1=x30=x30=x4x1x2x3x4=1010x1x2x3x4=0101因此特征向量构成的矩阵:T=1j001j0010100101计算该矩阵的逆矩阵:T1=0.50.5000.5i0.5i000.50.5100.5i0.5i01因此可将原始矩阵化简为对角型矩阵:T10ωf00ωf0000ωf00ωf000T=ωf0000ωf0000000000设存在可逆矩阵T,可将原始的状态变量转化为x:即x=T1xx=TxTx=ATxx=T1ATxT1AT=ωf0000ωf0000000000因此x˙1=ωfx1x˙2=ωfx2原始的状态变量:根据x=Tx计算可得:x=1j001j0010100101x1x2x3x4=x1+x2+x3jx1+jx2+x4x3x4

理论推导

如何推导 α β \alpha\beta αβ坐标系下的电压电流模型?
u ⃗ s = R s i ⃗ s + d d t ψ ⃗ s ψ ⃗ s = [ L 1 + L 2 cos ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 1 − L 2 cos ⁡ 2 θ r ] [ i α i β ] + [ cos ⁡ θ r sin ⁡ θ r ] ψ f i ⃗ α β = i ⃗ d q e j θ r = ( cos ⁡ θ r + j sin ⁡ θ r ) ( i d + j i q ) 因此: { i α = cos ⁡ θ r i d − sin ⁡ θ r i q i β = sin ⁡ θ r i d + cos ⁡ θ r i q [ i α i β ] = [ cos ⁡ θ r − sin ⁡ θ r sin ⁡ θ r cos ⁡ θ r ] [ i d i q ] ψ ⃗ s = [ L 1 + L 2 cos ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 1 − L 2 cos ⁡ 2 θ r ] [ cos ⁡ θ r − sin ⁡ θ r sin ⁡ θ r cos ⁡ θ r ] [ i d i q ] + [ cos ⁡ θ r sin ⁡ θ r ] ψ f ψ ⃗ s = [ ( L 1 + L 2 cos ⁡ 2 θ r ) cos ⁡ θ r + L 2 sin ⁡ 2 θ r sin ⁡ θ r − ( L 1 + L 2 cos ⁡ 2 θ r ) sin ⁡ θ r + L 2 sin ⁡ 2 θ r cos ⁡ θ r L 2 sin ⁡ 2 θ r cos ⁡ θ r + ( L 1 − L 2 cos ⁡ 2 θ r ) sin ⁡ θ r − L 2 sin ⁡ 2 θ r sin ⁡ θ r + ( L 1 − L 2 cos ⁡ 2 θ r ) cos ⁡ θ r ] [ i d i q ] + [ cos ⁡ θ r sin ⁡ θ r ] ψ f L 11 = L 1 cos ⁡ θ r + L 2 cos ⁡ 2 θ r cos ⁡ θ r + L 2 sin ⁡ 2 θ r sin ⁡ θ r = ( L 1 + L 2 ) cos ⁡ θ r L 12 = − L 1 sin ⁡ θ r − L 2 cos ⁡ 2 θ r sin ⁡ θ r + L 2 sin ⁡ 2 θ r cos ⁡ θ r = ( L 2 − L 1 ) sin ⁡ θ r L 21 = L 2 sin ⁡ 2 θ r cos ⁡ θ r + L 1 sin ⁡ θ r − L 2 cos ⁡ 2 θ r sin ⁡ θ r = ( L 1 + L 2 ) sin ⁡ θ r L 22 = − L 2 sin ⁡ 2 θ r sin ⁡ θ r + L 1 cos ⁡ θ r − L 2 cos ⁡ 2 θ r cos ⁡ θ r = ( L 1 − L 2 ) cos ⁡ θ r 因为: L 1 + L 2 = L d ; L 1 − L 2 = L q ; 因此: ψ ⃗ s = [ L d cos ⁡ θ r − L q sin ⁡ θ r L d sin ⁡ θ r L q cos ⁡ θ r ] [ i d i q ] + [ cos ⁡ θ r sin ⁡ θ r ] ψ f 继续化简: ψ ⃗ s = [ cos ⁡ θ r − sin ⁡ θ r sin ⁡ θ r cos ⁡ θ r ] [ L d i d + ψ f L q i q ] \vec{u}_s=R_s\vec{i}_s+\frac{d}{dt}\vec{\psi}_s \\ \vec{\psi}_s=\left[ \begin{matrix} L_1+L_2\cos 2\theta _r& L_2\sin 2\theta _r\\ L_2\sin 2\theta _r& L_1-L_2\cos 2\theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] +\left[ \begin{array}{c} \cos \theta _r\\ \sin \theta _r\\ \end{array} \right] \psi _f \\ \vec{i}_{\alpha \beta}=\vec{i}_{dq}e^{j\theta _r}=\left( \cos \theta _r+j\sin \theta _r \right) \left( i_d+ji_q \right) \\ \text{因此:}\begin{cases} i_{\alpha}=\cos \theta _ri_d-\sin \theta _ri_q\\ i_{\beta}=\sin \theta _ri_d+\cos \theta _ri_q\\ \end{cases} \\ \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] =\left[ \begin{matrix} \cos \theta _r& -\sin \theta _r\\ \sin \theta _r& \cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] \\ \vec{\psi}_s=\left[ \begin{matrix} L_1+L_2\cos 2\theta _r& L_2\sin 2\theta _r\\ L_2\sin 2\theta _r& L_1-L_2\cos 2\theta _r\\ \end{matrix} \right] \left[ \begin{matrix} \cos \theta _r& -\sin \theta _r\\ \sin \theta _r& \cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\left[ \begin{array}{c} \cos \theta _r\\ \sin \theta _r\\ \end{array} \right] \psi _f \\ \vec{\psi}_s=\left[ \begin{matrix} \left( L_1+L_2\cos 2\theta _r \right) \cos \theta _r+L_2\sin 2\theta _r\sin \theta _r& -\left( L_1+L_2\cos 2\theta _r \right) \sin \theta _r+L_2\sin 2\theta _r\cos \theta _r\\ L_2\sin 2\theta _r\cos \theta _r+\left( L_1-L_2\cos 2\theta _r \right) \sin \theta _r& -L_2\sin 2\theta _r\sin \theta _r+\left( L_1-L_2\cos 2\theta _r \right) \cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] \\ +\left[ \begin{array}{c} \cos \theta _r\\ \sin \theta _r\\ \end{array} \right] \psi _f \\ L_{11}=L_1\cos \theta _r+L_2\cos 2\theta _r\cos \theta _r+L_2\sin 2\theta _r\sin \theta _r=\left( L_1+L_2 \right) \cos \theta _r \\ L_{12}=-L_1\sin \theta _r-L_2\cos 2\theta _r\sin \theta _r+L_2\sin 2\theta _r\cos \theta _r=\left( L_2-L_1 \right) \sin \theta _r \\ L_{21}=L_2\sin 2\theta _r\cos \theta _r+L_1\sin \theta _r-L_2\cos 2\theta _r\sin \theta _r=\left( L_1+L_2 \right) \sin \theta _r \\ L_{22}=-L_2\sin 2\theta _r\sin \theta _r+L_1\cos \theta _r-L_2\cos 2\theta _r\cos \theta _r=\left( L_1-L_2 \right) \cos \theta _r \\ \text{因为:}L_1+L_2=L_d\text{;}L_1-L_2=L_q; \\ \text{因此:}\vec{\psi}_s=\left[ \begin{matrix} L_d\cos \theta _r& -L_q\sin \theta _r\\ L_d\sin \theta _r& L_q\cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\left[ \begin{array}{c} \cos \theta _r\\ \sin \theta _r\\ \end{array} \right] \psi _f \\ \text{继续化简:}\vec{\psi}_s=\left[ \begin{matrix} \cos \theta _r& -\sin \theta _r\\ \sin \theta _r& \cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} L_di_d+\psi _f\\ L_qi_q\\ \end{array} \right] u s=Rsi s+dtdψ sψ s=[L1+L2cos2θrL2sin2θrL2sin2θrL1L2cos2θr][iαiβ]+[cosθrsinθr]ψfi αβ=i dqejθr=(cosθr+jsinθr)(id+jiq)因此:{iα=cosθridsinθriqiβ=sinθrid+cosθriq[iαiβ]=[cosθrsinθrsinθrcosθr][idiq]ψ s=[L1+L2cos2θrL2sin2θrL2sin2θrL1L2cos2θr][cosθrsinθrsinθrcosθr][idiq]+[cosθrsinθr]ψfψ s=[(L1+L2cos2θr)cosθr+L2sin2θrsinθrL2sin2θrcosθr+(L1L2cos2θr)sinθr(L1+L2cos2θr)sinθr+L2sin2θrcosθrL2sin2θrsinθr+(L1L2cos2θr)cosθr][idiq]+[cosθrsinθr]ψfL11=L1cosθr+L2cos2θrcosθr+L2sin2θrsinθr=(L1+L2)cosθrL12=L1sinθrL2cos2θrsinθr+L2sin2θrcosθr=(L2L1)sinθrL21=L2sin2θrcosθr+L1sinθrL2cos2θrsinθr=(L1+L2)sinθrL22=L2sin2θrsinθr+L1cosθrL2cos2θrcosθr=(L1L2)cosθr因为:L1+L2=LdL1L2=Lq;因此:ψ s=[LdcosθrLdsinθrLqsinθrLqcosθr][idiq]+[cosθrsinθr]ψf继续化简:ψ s=[cosθrsinθrsinθrcosθr][Ldid+ψfLqiq]
扰动观测器的设计思路:

查漏补缺

仿真及理解

学习效率

生词

单词含义单词含义
originate :起源;源于demerit缺点;
audible音频的infinitesimal无穷小的
vulnerable易受影响的newly最新的
spatial空间的circuital电路的
trivial微小的;琐碎的refer to指的是
supplement补充;增补diverge分叉;偏离
extensive广泛的pertain与什么有关的
crucial至关重要的incorporate组合
internal内在的;本质的neutralize使失效
attenuation衰减asterisk星号
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值