什么叫特征分解?

特征分解(Eigenvalue Decomposition)是将一个方阵分解为特征向量和特征值的过程。对于一个 n×n 的方阵A,其特征向量(Eigenvector)v 和特征值(Eigenvalue)
λ 满足以下关系:
在这里插入图片描述
这可以写成特征方程的形式:
在这里插入图片描述
其中,I是n×n 的单位矩阵,det(⋅) 表示矩阵的行列式。解特征方程得到的特征值λ是方阵A的特征值,而解特征方程得到的特征向量 v 对应于每个特征值。

特征分解的表达式为:
在这里插入图片描述
其中,V 是包含特征向量的矩阵,Λ 是对角矩阵,对角线上的元素是特征值。特征分解的应用非常广泛,例如在主成分分析(PCA)中,特征分解被用来找到数据的主成分。

假设我们有一个 2×2 的矩阵 A 如下:
在这里插入图片描述
首先,我们需要解特征方程:
在这里插入图片描述
对于矩阵 A,特征方程为:
在这里插入图片描述
解这个方程可以得到特征值λ1=5 和λ2=2。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值