使用 AutoGen Studio 打造你的私有团队

AI Agent 无疑是今年最火爆的概念,从科技巨头的战略布局到创业公司的创新产品,AI 智能体正在重塑我们与机器交互的方式。无论是自动化任务、个性化服务,还是复杂问题的协同解决,AI Agent 都展现出了前所未有的潜力。

而在众多备受瞩目的框架中,微软 Autogen 凭借其灵活的多智能体协作能力,迅速成为开发者与企业的关注焦点。它不仅能高效整合多个 AI Agent,还能根据任务需求动态调整工作流程,让智能协作变得更简单、更强大。

在这篇博客中,我们将深入探索 Autogen 的核心特性、应用场景,以及它如何为下一代 AI 应用铺平道路。

AutoGen#

AutoGen是一种框架,用于使用多个代理来开发大型语言模型(LLM) 应用程序,这些代理相互对话以解决任务。 使用AutoGen 生成的代理可以在采用LLM、人工输入和工具组合的各种模式下运行。 AutoGen 代理的一个重要工具类型是代码执行程序。 它们使代理能够编写和执行代码以执行复杂的任务。

AutoGen Studio#

AutoGen Studio 是微软研发的一款功能强大的低代码界面工具,旨在简化多智能体应用的构建流程。 它基于AutoGen 框架之上,该框架是一个用于定义、配置和组合AI 代理以驱动多智能体应用的开源Python 框架。

安装 AutoGen Studio#

不多赘述,参考微软的文档,没啥好说的。

autogenstudio installation

模拟软件开发团队#

下面让我们使用 AutoGenStudio 来模拟一个软件开发团队。当这个团队接受到开发任务的时候,每个队员可以各施其职,配合着完成任务。

首先让我们在 AutoGenStudio 里面定义一个 team。定义的时候需要指定使用的模型,推出条件。以及 prompt。

这个 team 的定义本质上也是一个 Agent,它的任务是根据上下文选择团队成员(其他 Agent)去执行对应的任务。

Lily 前端开发工程师#

首先我们创建一个 Agent 来模拟前端开发工程师。他的任务是开发前端代码,比如编写 html,css 等等。

这里我们同样需要指定使用的模型以及 System Message。System Message 是在描述这个 Agent 的能力与职责。

Jim 后端开发工程师#

我们使用同样的方式定义一个后端开发工程师的 Agent。不同的是这次它能够使用 Tool,来执行一些 python 代码。

UserProxyAgent#

UserProxyAgent 是个特殊的 Agent,它不与 LLM 进行交互,它的职责是跟真实的人类进行交互。当某些情况需要人类介入的时候,会以一个输入的方式等待人类给出明确的信息。

在完成所有定义后,我们的软件开发团队结构如下:

设计一个登录界面#

当我们定义好这个team后,就可以给安排任务了。下面我们就给他们安排一个活:设计一个网页的登录页面。
要求如下:

设计一个登录界面,包含一个用户名名输入框,密码输入框,一个登录按钮。但是不需要调用任何后端API。因为我只想看看前端的效果。前端的代码请全部包含在一个页面里,不要把 css,javascript 等分开。一旦前端完成代码后,请把结果交给后端开发工程师,后端开发请使用 fastapi 建立一个服务,用户通过这个服务在浏览器里直接对前端设计的页面进行预览。

任务输入进去后可以看到各个 Agent 开始工作了,先是前端设计了页面,输出了 html,css 文件。最后后端工程师使用 python 直接生成了一个 web service 承载了这页面。我们访问能直接输入这个刚刚设计的登录框。

这个讨论的过程大家可以见以下视频:

【AutogenStudio 构建你的私人开发团队】
https://www.bilibili.com/video/BV1Qzo1YAEk7/?share_source=copy_web&vd_source=3f96a750277e9e3babf014a139c50726

原创作者: kklldog 转载于: https://www.cnblogs.com/kklldog/p/18811189/auto-gen-studio-team
<think>好的,我现在需要帮助用户了解如何使用AutoGen Studio。用户已经询问了相关的教程或文档,所以我的回答需要详细且结构清晰。首先,我应该参考用户提供的三个引用内容,这些引用提到了安装步骤、配置模型、代理和工作流,以及使用Playground。 接下来,我需要整理一个分步骤的指南,确保涵盖安装、配置和使用的基本流程。根据引用[2],安装是通过pip进行的,所以第一步是安装命令。然后,启动服务的命令也很重要,引用[3]提到了启动参数,比如端口和主机,需要简要说明。 配置部分,引用[2]详细说明了需要配置Models、Agents和Workflows。我需要逐一解释每个配置步骤的作用,例如模型需要API密钥,代理需要定义角色,工作流需要设计执行流程。此外,Playground的使用是测试的关键步骤,需要指导用户如何在这里进行交互。 用户可能需要进一步的问题,比如性能优化或具体应用场景,但当前问题主要是基础使用,所以相关问题部分可以围绕安装问题、代理配置技巧和模型选择展开。同时,要确保引用正确,每个引用对应到相应的步骤,比如安装步骤引用[2]和[3],配置部分引用[2]。 需要检查是否有遗漏的步骤,例如数据库配置,这在引用[3]中提到,但可能对新手用户来说不是必须的,所以可以放在进阶配置里。另外,确保语言口语化,避免技术术语过多,让用户容易理解。 最后,确保回答结构清晰,分步骤说明,并附带相关问题,帮助用户深入探索。同时,所有LaTeX格式正确,数学表达式使用$...$,独立公式用$$...$$,但在这个问题中可能涉及较少数学内容,所以主要注意代码块和引用标识的正确使用。</think>以下是如何使用AutoGen Studio的详细指南,结合官方文档及社区实践经验整理: ### 一、安装部署 1. 通过pip安装核心包: ```bash pip install autogenstudio ``` 安装过程会自动加载依赖项(引用[2]) 2. 启动开发服务器: ```bash autogenstudio ui --port 8080 --reload ``` 支持自定义端口和热加载功能(引用[3]) ### 二、核心配置流程 #### 1. 模型配置 • 进入`Models`界面添加API密钥 • 支持多模型并行配置: ```json { "openai": { "api_key": "sk-xxx", "model": "gpt-4" } } ``` (引用[2]) #### 2. 代理设置 • 在`Agents`模块定义角色技能 • 示例对话代理配置: ```python { "name": "数据分析师", "system_message": "你擅长使用Python进行数据清洗和分析", "tools": ["pandas", "matplotlib"] } ``` #### 3. 工作流设计 • 在`Workflows`界面拖拽构建执行流程图 • 典型工作流包含: ``` 用户输入 -> 意图识别 -> 技能匹配 -> 代理执行 -> 结果验证 ``` ### 三、使用Playground 1. 选择预配置的工作流模板 2. 在聊天界面输入测试指令 3. 实时观察代理间的协作过程 4. 通过日志查看器分析执行轨迹(引用[2])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值