前言
本篇文章,我们来探索下AutoGen使用其它LLM大模型。主要原因是AutoGen在使用chatgpt3.5/chatgpt 4等付费模型时,token开销比较大。如果我们的业务,社区里的开源模型就能搞定,那当然就开冲了。
接下来就让我们看下,来自Facebook的Llama2 7B。这个模型都有70亿+参数,表现优越。我们让AutoGen的模型替换成这两个模型,来看下运行效果。
LLM Studio
在之前的文章中,我们介绍了多款AI生态受欢迎的工具和服务。比如,Flowise AI这一无代码AI拖拽工具;PlayHT文本转语音工具。今天,我们来玩下LLM Studio
, 可以帮助我们快速下载各种开源大模型并运行,并以http server的方式提供LLM服务。 它是一个一站式的解决方案,可以提供OpenA兼容的接口,这样能让我们将之前基于OpenAi的应用,快速切换到开源大模型,降低开发成本。
根据官网的介绍,LMStdio主打以下功能
- 在本地运行各种大语言模型(
Hugging Face
大把开源模型) 可以非常方便的让我们在开发阶段,调试不同的模型,看在项目中的效果,最终选择用户体验更好的大模型。 - LMStdio 集成了Chat Bot 功能,可以方便的加载不同的模型,聊天 同时,它还支持OpenAI兼容的API格式,暴露接口。
- 可以方便的从
Hugging Face
下载一些模型和文件,LMStdio也会经常给我们推一些热点或有趣的模型。
完成AutoGen系列后, 我会启一个AI工具或服务系列,欢迎大家评论留言,你喜欢的AI工具或服务,打个tag, 交流起来。
- 下载 LLM Studio
到LM Studio - Discover, download, and run local LLMs,下载LLM Studio。
- 在模型search 功能页搜索
llama
,facebook 开源的大模型, 并从结果中找到我们需要的进行下载
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

- 测试聊天功能
我们在最上面,选择刚刚下下载的llama 2 chat 模型后,LLM Studio会加载并运行该模型。之后,我们就可以像使用chatgpt 一样,跟 llama 2模型聊天了。在左上角还会有内存和CPU的使用情况。从上图可知,CPU飙的快到脖颈子了。
- api server
chat 之后的这个tab, 是 api server 页, 它会基于我们的大模型, 启动一个本地的http server, 让我们以localhost api的方式调用大模型能力。 点击Start Server
可以从日志中看到相关信息,它是以OpenAI的方式,提供这些接口。
- 测试llama 2 的api server
我们使用postman发送了请求,成功拿到了本地模型执行后的响应。速度有点慢,是我们自己电脑或服务器的性能问题了。
对比llm_config
python复制代码config_list = [ {