逐步掌握最佳Ai Agents框架-AutoGen 八 开源模型

前言

本篇文章,我们来探索下AutoGen使用其它LLM大模型。主要原因是AutoGen在使用chatgpt3.5/chatgpt 4等付费模型时,token开销比较大。如果我们的业务,社区里的开源模型就能搞定,那当然就开冲了。

接下来就让我们看下,来自Facebook的Llama2 7B。这个模型都有70亿+参数,表现优越。我们让AutoGen的模型替换成这两个模型,来看下运行效果。

LLM Studio

在之前的文章中,我们介绍了多款AI生态受欢迎的工具和服务。比如,Flowise AI这一无代码AI拖拽工具;PlayHT文本转语音工具。今天,我们来玩下LLM Studio, 可以帮助我们快速下载各种开源大模型并运行,并以http server的方式提供LLM服务。 它是一个一站式的解决方案,可以提供OpenA兼容的接口,这样能让我们将之前基于OpenAi的应用,快速切换到开源大模型,降低开发成本。

根据官网的介绍,LMStdio主打以下功能

  • 在本地运行各种大语言模型(Hugging Face大把开源模型)   可以非常方便的让我们在开发阶段,调试不同的模型,看在项目中的效果,最终选择用户体验更好的大模型。
  • LMStdio 集成了Chat Bot 功能,可以方便的加载不同的模型,聊天   同时,它还支持OpenAI兼容的API格式,暴露接口。
  • 可以方便的从Hugging Face下载一些模型和文件,LMStdio也会经常给我们推一些热点或有趣的模型。

完成AutoGen系列后, 我会启一个AI工具或服务系列,欢迎大家评论留言,你喜欢的AI工具或服务,打个tag, 交流起来。

image.png

  • 下载 LLM Studio

LM Studio - Discover, download, and run local LLMs,下载LLM Studio。

  • 在模型search 功能页搜索llama,facebook 开源的大模型, 并从结果中找到我们需要的进行下载

image.png
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

  按上图, 会将模型下载到本地。
  • 测试聊天功能

1700796140359.jpg

我们在最上面,选择刚刚下下载的llama 2 chat 模型后,LLM Studio会加载并运行该模型。之后,我们就可以像使用chatgpt 一样,跟 llama 2模型聊天了。在左上角还会有内存和CPU的使用情况。从上图可知,CPU飙的快到脖颈子了。

  • api server

image.png

chat 之后的这个tab, 是 api server 页, 它会基于我们的大模型, 启动一个本地的http server, 让我们以localhost api的方式调用大模型能力。   点击Start Server 可以从日志中看到相关信息,它是以OpenAI的方式,提供这些接口。

image.png

  • 测试llama 2 的api server

image.png

我们使用postman发送了请求,成功拿到了本地模型执行后的响应。速度有点慢,是我们自己电脑或服务器的性能问题了。

对比llm_config

python复制代码config_list = [ {
<think>好的,用户需要寻找关于AI Agent的开源项目或资源,特别是代码和框架相关的。首先,我需要回忆一下目前比较知名的开源AI Agent项目,并确保这些项目是活跃且可靠的。 首先,Autogen是微软推出的,支持多智能体协作,应该是一个不错的选择。然后是LangChain,它虽然更偏向工具链,但常被用于构建Agent,可能符合用户需求。AutoGPT作为早期开源项目,虽然有些过时,但仍有参考价值。BabyAGI和Camel这两个项目在特定场景下应用较多,比如任务驱动和角色扮演,可以推荐。此外,OpenAI的Assistant API虽然不是完全开源,但提供了构建Agent的基础,值得提及。 接下来,用户可能还需要框架和工具,比如Hugging Face的Transformers库和LlamaIndex,这些虽然不是专为Agent设计,但常被集成使用。E2B作为安全云环境,适合部署Agent,应该引用一下。开发资源部分,论文和教程也是必要的,比如ReAct和Toolformer的研究,以及LangChain的官方文档。 需要确保每个推荐的项目都有相关描述、技术栈、适用场景和代码示例或链接。同时,要检查是否有遗漏的重要项目,比如最近比较火的CrewAI或者SuperAGI,不过可能用户需要更主流的。另外,代码示例要简短,比如用Python展示Autogen的基本配置,或者BabyAGI的任务处理循环。 最后,生成相关问题时要考虑用户可能的后续需求,比如部署、多模态集成、安全问题和性能优化,这样能帮助用户进一步探索。同时,注意引用提供的参考内容,比如E2B和代理的应用场景,以增强回答的相关性。</think>以下是关于AI Agent开源项目、代码框架及相关资源的整理,结合技术选型、应用场景和开发资源进行分类: --- ### 一、核心开源框架与项目 1. **Autogen (微软)** - **描述**:支持多智能体协作的框架,通过定义角色(如UserProxyAgent、AssistantAgent)实现任务分解与对话式推理。 - **技术栈**:Python、OpenAI API、本地LLM集成 - **代码示例**: ```python from autogen import AssistantAgent, UserProxyAgent assistant = AssistantAgent("assistant") user_proxy = UserProxyAgent("user_proxy") user_proxy.initiate_chat(assistant, message="分析股票市场趋势") ``` - **适用场景**:复杂任务协作、数据分析、代码生成[^1] 2. **LangChain** - **描述**:提供工具链(Tools)和Agent抽象层,支持与外部API、数据库交互。 - **关键组件**:ReAct策略、Toolkits、Memory管理 - **代码示例**: ```python from langchain.agents import load_tools tools = load_tools(["serpapi", "llm-math"], llm=llm) agent.run("特斯拉当前股价的平方根是多少?") ``` 3. **AutoGPT (开源社区)** - **特点**:早期自主Agent实现,支持目标分解与循环迭代 - **局限**:代码冗余度高,适合学习架构设计[^2] --- ### 二、垂直领域解决方案 1. **BabyAGI** - **定位**:轻量级任务驱动型Agent - **核心逻辑**: ```python while task_queue.not_empty(): task = task_queue.pop() result = execute(task) new_tasks = prioritize(result) task_queue.add(new_tasks) ``` 2. **Camel(角色扮演Agent)** - **创新点**:通过AI角色(如"科学家"+"助手")模拟人类协作 - **论文**:*CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society* --- ### 三、基础设施与工具 1. **Hugging Face Transformers** - **作用**:提供LLM基座模型(如Llama、Falcon)的快速调用 - **集成示例**: ```python from transformers import pipeline agent = pipeline("conversational", model="meta-llama/Meta-Llama-3-70B-Instruct") ``` 2. **E2B (安全沙箱)** - **价值**:为Agent提供隔离代码执行环境,支持文件系统、进程管理等 --- ### 四、开发资源推荐 1. **论文与理论** - *ReAct: Synergizing Reasoning and Acting in Language Models*(任务推理方法论) - *Toolformer: Language Models Can Teach Themselves to Use Tools*(工具调用范式) 2. **实践教程** - LangChain官方文档(Agent模块详解) - Autogen多智能体协作案例库(GitHub: microsoft/autogen---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值