模型部署实践 - BevFusion
学习 BevFusion 的部署,看了很多的资料,这篇博客进行总结和记录自己的实践
思路总结
对于一个模型我们要进行部署,一般有以下几个开发流程或思路:
- PyTorch 转 ONNX 转 TRT
- FP16 优化
- cuda-graph 优化
- INT8 量化优化
- ONNX 模型层面优化
- Pipeline 优化
- 模型内深度优化
我们需要先快速的去了解网络,然后将其转换成 Onnx 和 Tensorrt,然后再去根据结果进行二次优化
一、网络结构 - 总结
1.1、代码
Pytorch 代码:https://github.com/mit-han-lab/bevfusion
CUDA-BEVFusion 部署代码:https://github.com/NVIDIA-AI-IOT/Lidar_AI_Solution/tree/master/
订阅专栏 解锁全文
664

被折叠的 条评论
为什么被折叠?



